4 resultados para invasiveness
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A survey of existing data suggests that trophoblast cells produce factors involved in extracellular matrix degradation. In this study, we correlated the expression of cathepsins D and B in the murine ectoplacental cone with the ultrastructural progress of decidual invasion by trophoblast cells. Both proteases were immunolocalized at implantation sites in lysosome-endosome-like compartments of trophoblast giant cells. Cathepsin D, but not cathepsin B, was also detected ultrastructurally in extracellular compartments surrounded by processes of the invading trophoblast containing extracellular matrix components and endometrial cell debris. The expression of cathepsins D and B by trophoblast cells was confirmed by RT-PCR in ectoplacental cones isolated from implantation chambers at gestation day 7.5. Our data addressed a positive relationship between the expression and presence of cathepsin D at the extracellular compartment of the maternal-fetal interface and the invasiveness of the trophoblast during the postimplantation period, suggesting a participation of invading trophoblast cells in the cathepsin D release. Such findings indicate that mouse trophoblast cells might exhibit a proteolytic ability to partake in the decidual invasion process at the maternal-fetal interface. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
BACKGROUND: Ameloblastoma is a benign odontogenic tumor, exhibiting local invasiveness and high rate of recurrence. Metallothionein is a protein associated with tumorigenesis, serving as prognostic factor in different neoplasms. We are interested in mechanisms underlying ameloblastoma local invasiveness. Thus, we decided to analyze expression of metallothionein in this tumor. MATERIALS AND METHODS: An immunohistochemical evaluation of metallothionein in ameloblastoma was carried out. As control, we assessed expression of the same molecule in calcifying cystic odontogenic tumor (CCOT), a non-invasive odontogenic neoplasm with ameloblastomatous epithelium. RESULTS: We studied 12 cases of solid/multicystic ameloblastomas. Metallothionein was observed in all samples. This molecule was observed in columnar cells in the periphery and in central polyhedral cells. CCOT (four cases) also showed the presence of metallothionein. Morphometry of stained areas showed that expression of metallothionein in ameloblastoma was significantly higher compared to CCOT (P < 0.0001). CONCLUSIONS: This protein may have an impact on ameloblastoma behavior. Metallothionein would act as a zinc reservoir for important proteases related to ameloblastoma biology, such as MMPs. This protein could also display pro-mitotic and anti-apoptotic features in the tumor. J Oral Pathol Med (2011) 40: 516-519
Resumo:
Aims: Ameloblastoma is an odontogenic neoplasm with local invasiveness and recurrence. We have previously suggested that growth factors and matrix metalloproteinases (MMPs) influence ameloblastoma invasiveness(1). The aim was to study expression of MMPs, tissue inhibitor of metalloproteinases (TIMPs) and growth factors in ameloblastoma. Methods and results: Thirteen cases of solid/multicystic ameloblastoma were examined. As a control, calcifying cystic odontogenic tumour (CCOT), a non-invasive odontogenic neoplasm with ameloblastomatous epithelium was also studied. Immunohistochemistry detected MMPs, TIMPs and growth factors in ameloblastoma and CCOT. The labelling index (LI) of MMP-9 and TIMP-2 was significantly higher in ameloblastoma compared with CCOT. The LI of epidermal growth factor (EGF), transforming growth factor (TGF)-alpha and epidermal growth factor receptor (EGFR) was also increased in ameloblastoma. This neoplasm showed greater expression of MMPs, TIMPs and growth factors compared with CCOT. We then analysed these molecules in ameloblastoma cells and stroma. Ameloblastoma cells exhibited increased LI of MMP-1, -2 and EGFR. We found a positive correlation between EGF and TIMP-1, and between TGF-alpha and TIMP-2. It is known that signals generated by growth factors are transduced by the ERK pathway. Ameloblastoma stroma exhibited the phosphorylated (activated) form of ERK. Conclusions: These results suggest an interplay involving growth factors MMPs and TIMPs that may contribute to ameloblastoma behaviour. Signals generated by this molecular network would be transduced by ERK 1/2 pathway.
Resumo:
Leptospirosis is a spirochetal zoonotic disease of global distribution with a high incidence in tropical regions. In the last 15 years it has been recognized as an important emerging infectious disease due to the occurrence of large outbreaks in warm-climate countries and, occasionally, in temperate regions. Pathogenic leptospires efficiently colonize target organs after penetrating the host. Their invasiveness is attributed to the ability to multiply in blood, adhere to host cells, and penetrate into tissues. Therefore, they must be able to evade the innate host defense. The main purpose of the present study was to evaluate how several Leptospira strains evade the protective function of the complement system. The serum resistance of six Leptospira strains was analyzed. We demonstrate that the pathogenic strain isolated from infected hamsters avoids serum bactericidal activity more efficiently than the culture-attenuated or the nonpathogenic Leptospira strains. Moreover, both the alternative and the classical pathways of complement seem to be responsible for the killing of leptospires. Serum-resistant and serum-intermediate strains are able to bind C4BP, whereas the serum-sensitive strain Patoc I is not. Surface-bound C4BP promotes factor I-mediated cleavage of C4b. Accordingly, we found that pathogenic strains displayed reduced deposition of the late complement components C5 to C9 upon exposure to serum. We conclude that binding of C4BP contributes to leptospiral serum resistance against host complement.