2 resultados para integrated navigation systems
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Pinheiros River (Brazil) plays a pivotal role in supplying water to Billings Reservoir, which presents multiple uses (human drinking, energy generation, irrigation, navigation, fishing and leisure) An intense monitoring program was performed during the years 2007 and 2008 to find out whether on site flotation is a feasible solution or not for improving the water quality of this urban river, attenuating the pollutants load caused by the water pumping to the reservoir (approximately 10 m(3)s(-1)) The monitoring of 18 variables (13,429 laboratorial analysis during the period of 490 days), suggested that despite the convenience of the on site approach for water treatment, especially for rivers located in fully urbanized areas, the flotation system is not enough itself to recover Pinheiros River water quality, given the several constraints that apply Total phosphorus removal was high in percentage terms (about 90%), although the remaining concentrations were not so low (mean of 0 05 mg L(-1)) The removal efficiency of some variables was insufficient, leading to high final mean concentrations of metals [e g aluminium (0 29 mg L(-1)), chromium (0 02 mg L(-1)) and iron (1 1 mg L(-1))] as well as nitrogen-ammonia (25 8 mg L(-1)) and total suspended solids (18 mg L(-1)) in the treated water
Resumo:
This study investigated the physical processes involved in the development of thunderstorms over southwestern Amazon by hypothesizing causalities for the observed cloud-to-ground lightning variability and the local environmental characteristics. Southwestern Amazon experiences every year a large variety of environmental factors, such as the gradual increase in atmospheric moisture, extremely high pollution due to biomass burning, and intense deforestation, which directly affects cloud development by differential surface energy partition. In the end of the dry period it was observed higher percentages of positive cloud-to-ground (+CG) lightning due to a relative increase in +CG dominated thunderstorms (positive thunderstorms). Positive (negative) thunderstorms initiated preferentially over deforested (forest) areas with higher (lower) cloud base heights, shallower (deeper) warm cloud depths, and higher (lower) convective potential available energy. These features characterized the positive (negative) thunderstorms as deeper (relatively shallower) clouds, stronger (relatively weaker) updrafts with enhanced (decreased) mixed and cold vertically integrated liquid. No significant difference between thunderstorms (negative and positive) and nonthunderstorms were observed in terms of atmospheric pollution, once the atmosphere was overwhelmed by pollution leading to an updraft-limited regime. However, in the wet season both negative and positive thunderstorms occurred during periods of relatively higher aerosol concentration and differentiated size distributions, suggesting an aerosol-limited regime where cloud electrification could be dependent on the aerosol concentration to suppress the warm and enhance the ice phase. The suggested causalities are consistent with the invoked hypotheses, but they are not observed facts; they are just hypotheses based on plausible physical mechanisms.