3 resultados para infant carriers
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Facioscapulohumeral muscular dystrophy (FSHD) is a progressive muscle disorder that has been associated with a contraction of 3.3-kb repeats on chromosome 4q35. FSHD is characterized by a wide clinical inter- and intrafamilial variability, ranging from wheelchair-bound patients to asymptomatic carriers. Our study is unique in comparing the gene expression profiles from related affected, asymptomatic carrier, and control individuals. Our results suggest that the expression of genes on chromosome 4q is altered in affected and asymptomatic individuals. Remarkably, the changes seen in asymptomatic samples are largely in products of genes encoding several chemokines, whereas the changes seen in affected samples are largely in genes governing the synthesis of GPI-linked proteins and histone acetylation. Besides this, the affected patient and related asymptomatic carrier share the 4qA161 haplotype. Thus, these polymorphisms by themselves do not explain the pathogenicity of the contracted allele. Interestingly, our results also suggest that the miRNAs might mediate the regulatory network in FSHD. Together, our results support the previous evidence that FSHD may be caused by transcriptional dysregulation of multiple genes, in cis and in trans, and suggest some factors potentially important for FSHD pathogenesis. The study of the gene expression profiles from asymptomatic carriers and related affected patients is a unique approach to try to enhance our understanding of the missing link between the contraction in D4Z4 repeats and muscle disease, while minimizing the effects of differences resulting from genetic background.
Resumo:
In this paper we introduce a parametric model for handling lifetime data where an early lifetime can be related to the infant-mortality failure or to the wear processes but we do not know which risk is responsible for the failure. The maximum likelihood approach and the sampling-based approach are used to get the inferences of interest. Some special cases of the proposed model are studied via Monte Carlo methods for size and power of hypothesis tests. To illustrate the proposed methodology, we introduce an example consisting of a real data set.
Resumo:
In all higher nonhuman primates, species survival depends upon safe carrying of infants clinging to body hair of adults. In this work, measurements of mechanical properties of ape hair (gibbon, orangutan, and gorilla) are presented, focusing on constraints for safe infant carrying. Results of hair tensile properties are shown to be species-dependent. Analysis of the mechanics of the mounting position, typical of heavier infant carrying among African apes, shows that both clinging and friction are necessary to carry heavy infants. As a consequence, a required relationship between infant weight, hair-hair friction coefficient, and body angle exists. The hair-hair friction coefficient is measured using natural ape skin samples, and dependence on load and humidity is analyzed. Numerical evaluation of the equilibrium constraint is in agreement with the knuckle-walking quadruped position of African apes. Bipedality is clearly incompatible with the usual clinging and mounting pattern of infant carrying, requiring a revision of models of hominization in relation to the divergence between apes and hominins. These results suggest that safe carrying of heavy infants justify the emergence of biped form of locomotion. Ways to test this possibility are foreseen here.