9 resultados para incubator
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This in vitro study evaluated the cytotoxicity of an experimental restorative composite resin subjected to different light-curing regimens. METHODS: Forty round-shaped specimens were prepared and randomly assigned to four experimental groups (n=10), as follows: in Group 1, no light-curing; in Groups 2, 3 and 4, the composite resin specimens were light-cured for 20, 40 or 60 s, respectively. In Group 5, filter paper discs soaked in 5 µL PBS were used as negative controls. The resin specimens and paper discs were placed in wells of 24-well plates in which the odontoblast-like cells MDPC-23 (30,000 cells/cm²) were plated and incubated in a humidified incubator with 5% CO2 and 95% air at 37ºC for 72 h. The cytotoxicity was evaluated by the cell metabolism (MTT assay) and cell morphology (SEM). The data were analyzed statistically by Kruskal-Wallis and Mann-Whitney tests (p<0.05). RESULTS: In G1, cell metabolism decreased by 86.2%, indicating a severe cytotoxicity of the non-light-cured composite resin. On the other hand, cell metabolism decreased by only 13.3% and 13.5% in G2 and G3, respectively. No cytotoxic effects were observed in G4 and G5. In G1, only a few round-shaped cells with short processes on their cytoplasmic membrane were observed. In the other experimental groups as well as in control group, a number of spindle-shaped cells with long cytoplasmic processes were found. CONCLUSION: Regardless of the photoactivation time used in the present investigation, the experimental composite resin presented mild to no toxic effects to the odontoblast-like MDPC-23 cells. However, intense cytotoxic effects occurred when no light-curing was performed.
Resumo:
OBJETIVO: Verificar a influência do local de nascimento e do transporte sobre a morbimortalidade de recém-nascidos prematuros na Região Sul do Brasil. MÉTODOS: Estudo de coorte com recém-nascidos prematuros transferidos para a unidade de tratamento intensivo de referência (grupo transporte = 61), tendo sido acompanhados até a alta. Os dados sobre o atendimento no hospital de origem e transporte foram obtidos no momento da internação. Esse grupo foi comparado com neonatos da maternidade de referência, pareados por idade gestacional (grupo controle = 123), tendo como desfecho primário o óbito e desfechos secundários as alterações da glicemia, temperatura e saturação de oxigênio no momento da internação e a incidência de enterocolite necrosante, displasia broncopulmonar e sepses. Na associação entre as variáveis e o desfecho, foi utilizado o risco relativo. Foi adotado um nível de significância de α = 5% e β = 90%. RESULTADOS: A distância média percorrida foi de 91 km. A idade gestacional média foi de 34 semanas. Entre os recém-nascidos transferidos, 23% (n = 14) não tiveram atendimento pediátrico na sala de parto. No transporte, 33% dos recém-nascidos foram acompanhados por pediatra, e os equipamentos utilizados foram: incubadora (57%), bomba de infusão (13%), oxímetro (49%) e aparelho para aferição da glicemia (21%). O grupo transporte apresentou maior incidência de hiperglicemia, risco relativo (RR) = 3,2 (2,3-4,4), hipoglicemia, RR = 2,4 (1,4-4,0), hipertermia, RR = 2,5 (1,6-3,9), e hipoxemia, RR = 2,2 (1,6-3,0). Foram observados 18% de óbitos no grupo dos transferidos e 8,9% no grupo controle, RR = 2,0 (1,0-2,6). CONCLUSÕES: A pesquisa expõe deficiências no atendimento e transporte dos recém-nascidos, sendo necessária uma melhor organização do atendimento perinatal e do transporte na região nordeste do Rio Grande do Sul.
Resumo:
Background: Despite significant advances in neurosurgical techniques, the median survival time of patients with glioblastoma has improved little over the past 50 years and remains less than one year. Photodynamic therapy (PDT) is presently established as a widely accepted modality for the treatment of a variety of solid tumors. Objectives: This study evaluated the effect of PDT-Photogem (R) on five glioma cell lines (U87, U138, U251, U343, and T98G). Methods: The experiments were carried out in 25-cm(3) flasks with different groups of cells seeded at a density of 1 x 10(5) cells per flask. After 3 h, the medium was removed, and the cells were incubated for 4 h with Photogem (5 mu g/mL). After the incubation time, the photosensitizer-containing medium was removed and the cells were irradiated with LED (630 nm, 25 mW/cm(2), 25 J/cm(2)) devices for 17 min. For the final steps of the PDT, the cells were returned to the incubator and kept at 37 degrees C with 5% CO(2) for 24 h, the cell viability assay was assessed using the trypan blue method, and the expression of Caspase 3 mRNA levels was assessed by real-time quantitative PCR. Results: Upon PDT-Photogem (R) treatment, viable cells, as evaluated by the trypan blue dye-exclusion method, decreased in two cell lines (U87 and U138) but not in the other three. Apoptosis, as assessed by the expression of caspase-3 mRNA levels, was at least partly involved in the death mechanism of the cell lines. Conclusions: Collectively, our results indicated that PDT-Photogem (R) can act in glioma cells, thus encouraging new experiments in this field.
Resumo:
The present study evaluated the infection of opossums (Didelphis aurita) by Rickettsia rickettsii and their role as amplifier hosts for horizontal transmission of R. rickettsii to Amblyomma cajennense ticks. Three groups of opossums were evaluated: on day 0, group 1 (G1) was inoculated intraperitoneally with R. rickettsii; group 2 (G2) was infested by R. rickettsii-infected ticks; and group 3 (G3) was the uninfected control group. Opossum rectal temperature was measured daily. Blood samples were collected every 2 to 4 days during 30 days, and used to (1) inoculate guinea pigs intraperitoneally; (2) extract DNA followed by real-time polymerase chain reaction (PCR) targeting the rickettsial gene gltA; (3) study hematology; (4) detect R. rickettsii-reactive antibodies by indirect direct immunofluorescence assay (IFA). Blood was also collected every 10 days from days 30 to 180, to be tested by serology. Opossums were infested by uninfected A. cajennense larvae and nymphs from days 3 to 15. Engorged ticks were collected and allowed to molt in an incubator. Thereafter, the subsequent flat ticks were allowed to feed on uninfected rabbits, which were tested for seroconversion by IFA. Samples of flat ticks were also tested by real-time PCR. All G1 and G2 opossums became infected by R. rickettsii, as demonstrated by real-time PCR or/and guinea pig inoculation, but they showed no clinical abnormality. Rickettsemia was first detected at days 2 to 8, lasting intermittently till days 1 to 30. Approximately 18% and 5% of the flat ticks previously fed on G1 and G2 opossums, respectively, became infected by R. rickettsii, but only the rabbits infested with G1-derived ticks seroconverted. The study demonstrated that R. rickettsii was capable of infecting opossums without causing illness and developing rickettsemia capable of causing infection in guinea pigs and ticks, although the infection rate in ticks was low.
Resumo:
The `biomimetic` approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes the cell-scaffold constructs to a wider array of mechanical forces. The pump of the VAD has two chambers: a blood and a pneumatic chamber, separated by an elastic membrane. Pulsatile air-pressure is generated by a piston-type actuator and delivered to the pneumatic chamber, ejecting the fluid in the blood chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD`s inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber, variable throttle and reservoir, connected by silicone tubings. The reservoir sat on an elevated platform, allowing adjustment of ventricular preload between 0 and 11 mmHg. To allow for sterile gaseous exchange between the circuit interior and exterior, a 0.2 mu m filter was placed at the reservoir. Pressure and flow were registered downstream of the TE valve. The circuit was filled with culture medium and fitted in a standard 5% CO(2) incubator set at 37 degrees C. Pressure and flow waveforms were similar to those obtained under physiological conditions for the pulmonary circulation. The `cardiomimetic` approach presented here represents a new perspective to conventional biomimetic approaches in TE, with potential advantages. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The present study evaluated the infection of capybaras (Hydrochoerus hydrochaeris) by Rickettsia rickettsii and their role as amplifier hosts for horizontal transmission of R. rickettsii to Amblyomma cajennense ticks. Two groups of two capybaras each were evaluated: on day 0, group 1 (G1) was infested by R. rickettsii-infected ticks, and group 2 (G2) was inoculated intraperitoneally with R. rickettsii. Two additional groups were control groups, not exposed to R. rickettsii, being CG1 group the control of G1, and CG2 group the control of G2. Capybara rectal temperature was measured daily. Blood samples were collected every 3 days during 30 days, and used to (i) inoculate guinea pigs intraperitoneally; (ii) DNA extraction followed by real-time PCR targeting the rickettsial gene gltA; (iii) hematology; (iv) detection of R. rickettsii-reactive antibodies by indirect immunofluorescence assay (IFA). Blood was also collected from G I capybaras every approximate to 10-30 days till the 146th day, to be tested by serology. Capybaras were infested by uninfected A. cajennense nymphs from the 3rd to the 18th day. Engorged nymphs were collected, allowed to molt to adults in an incubator. Thereafter, the subsequent flat ticks were tested by PCR. All G1 and G2 capybaras became infected by R. rickettsii, as demonstrated by guinea pig inoculation and seroconversion, but they showed no fever. Rickettsemia was continually detected from the 6th (G2 capybaras) or 9th (G1 capybaras) to the 18th day post inoculation or infestation with R. rickettsii-infected ticks. A total of 20-25% and 30-35% of the flat ticks previously fed on G1 and G2 capybaras, respectively, became infected by R. rickettsii. The study demonstrated that R. rickettsii was capable to infect capybaras without causing clinical illness, inducing rickettsemia capable to cause infection in guinea pigs and ticks. Our results indicate that capybaras act as amplifier host of R. rickettsii for A. cajennense ticks in Brazil. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Although Amblyomma brasiliense Arag (a) over tildeo 1908 has been reported as one of the most aggressive ticks to humans in Brazil, information about the biology of this tick species is virtually inexistent. This work reports data on the life cycle of A. brasiliense fed on rabbits and pigs and maintained in an incubator at 20 degrees C, 90% RH and 12 h of light for off-host development. Tick yield of adult females fed on pigs and rabbits was 81.2% and 58.3%, respectively. Females fed on pigs had mean engorgement weight of 862.3 mg and egg mass of 208 mg, while females fed on rabbits had mean engorgement weight of 606.1 mg and egg mass of 160 mg; these values did not differ statistically between host species. Feeding period of female ticks fed on pigs (10 days) was significantly shorter than that on rabbits (17 days). Mean preoviposition period was slightly longer (35.9 days) for ticks fed on pigs than on rabbits (30 days). The minimum incubation period of eggs of ticks from both host species was similar and over 100 days. Egg production efficiency was low for females fed on both hosts (less than 30% and 20% for ticks from pigs and rabbits, respectively). More than 55% of larvae and 79% of nymphs fed on rabbits, set free inside the feeding chambers, engorged successfully. These ticks attained an engorgement weight of 1.3 and 18.2 mg, respectively, and fed for approximately 5 days. The minimum pre-molt period was 30 days for engorged larvae and over 44 days for nymphs. Molting success was low, less than 50% in the case of larvae and less than 20% for nymphs. Further studies are required to better determine the off-host requirements of this tick species.
Resumo:
The life cycle of Ixodes luciae was evaluated for five consecutive generations in the laboratory. Wild mice Calomys callosus and laboratory rats Rattus norvegicus were used as hosts for larvae and nymphs. For adult ticks, opossums Didelphis aurita were used as hosts. Off-host developmental periods were observed in an incubator at 27A degrees C and 95% RH. The life cycle of I. luciae lasted 95-97 days, excluding prefeeding periods. C. callosus, one of the natural host species for I. luciae immature stages, was shown to be much more suitable than the artificial host R. norvegicus. Significantly (P < 0.05), more larvae and nymphs successfully fed on C. callosus than on R. norvegicus. When tick-na < ve C. callosus were exposed to three consecutive larval infestations at 24-day intervals, recovery of engorged larvae were greater in the second and third infestations, indicating that previous infestations did not induce acquired resistance to ticks. Larval feeding period typically varied from 5 to 10 days on R. norvegicus, but was significantly (P < 0.05), longer on C. callosus (range, 7-34 days). The majority (71.7%) of I. luciae adult females successfully fed and oviposited after exposed to D. aurita. Mean engorged weight (581.9 mg; range, 237.1-796.0 mg) of these females were much higher than those previously reported for other New World Ixodes species. Our results are in accordance to the current literature that appoints opossums Didelphidae and small rodents (e.g., C. callosus) natural hosts for I. luciae immature and adult stages, respectively.
Resumo:
Studies have shown that the increase of cell metabolism depends on the low level laser therapy (LLLT) parameters used to irradiate the cells. However, the optimal laser dose to up-regulate pulp cell activity remains unknown. Consequently, the aim of this study was to evaluate the metabolic response of odontoblast-like cells (MDPC-23) exposed to different LLLT doses. Cells at 20000 cells/cm(2) were seeded in 24-well plates using plain culture medium (DMEM) and were incubated in a humidified incubator with 5% CO(2) at 37 degrees C. After 24 h, the culture medium was replaced by fresh DMEM supplemented with 5% (stress by nutritional deficit) or 10% fetal bovine serum (FBS). The cells were exposed to different laser doses from a near infrared diode laser prototype designed to provide a uniform irradiation of the wells. The experimental groups were: G1: 1.5 J/cm(2) + 5% FBS; G2: 1.5 J/cm(2) + 10% FBS; G3: 5 J/cm(2) + 5% FBS; G4: 5 J/cm(2) + 10% FBS; G5: 19 J/cm(2) + 5% FBS; G6: 19 J/cm(2) + 10% FBS. LLLT was performed in 3 consecutive irradiation cycles with a 24-hour interval. Non-irradiated cells cultured in DMEM supplemented with either 5 or 10% FBS served as control groups. The analysis of the metabolic response was performed by the MTT assay 3 h after the last irradiation. G1 presented an increase in SDH enzyme activity and differed significantly (Mann-Whitney test, p < 0.05) from the other groups. Analysis by scanning electron microscopy showed normal cell morphology in all groups. Under the tested conditions, LLLT stimulated the metabolic activity of MDPC-23 cultured in DMEM supplemented with 5% FBS and exposed to a laser dose of 1.5 J/cm(2). These findings are relevant for further studies on the action of near infrared lasers on cells with odontoblast phenotype.