4 resultados para immunolabelling
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The vitellogenic process in Culex quinquefasciatus, which is triggered by a blood meal, involves the synthesis, distribution and storage of the nutrients necessary for embryo development. The fat body of an adult female Cx. quinquefasciatus revealed two cell types: large trophocytes and small, eosinophilic, "oenocyte-like" cells, which show no morphological changes throughout the gonotrophic cycle. Trophocytes, which only begin to synthesise vitellogenin (Vg) 12 h post-blood meal (PBM), undergo a series of morphological changes following engorgement. These changes include the expansion of the rough endoplasmic reticulum (RER) and Golgi complex, which are later destroyed by autophagosomes. At 84 h PBM, trophocytes return to their pre-engorgement morphology. The ovarian follicles of non-blood-fed Cx. quinquefasciatus contain a cluster of eight undifferentiated cells surrounded by follicular epithelium. After engorgement, the oocyte membrane facing the perioocytic space increases its absorptive surface by microvilli development; large amounts of Vg and lipids are stored between 24 and 48 h PBM. Along with yolk storage in the oocyte, follicular cells exhibit the development of RER cisternae and electron-dense granules begin to fill the perioocytic space, possibly giving rise to endochorion. Later in the gonotrophic cycle, electron-dense vesicles, which are possible exochorion precursors, fuse at the apical membrane of follicular cells. This fusion is followed by follicular cell degeneration.
Resumo:
Cell damage and spatial localization deficits are often reported as long-term consequences of pilocarpine-induced status epilepticus. In this study, we investigated the neuroprotective effects of repeated drug administration after long-lasting status epilepticus. Groups of six to eight Wistar rats received microinjections of pilocarpine (2.4 mg/mu l, 1 mu l) in the right dorsal hippocampus to induce a status epilepticus, which was attenuated by thiopental injection (35 mg/kg, i.p.) 3 hrs after onset. Treatments consisted of i.p. administration of diazepam, ketamine, carbamazepine, or phenytoin at 4, 28, 52, and 76 hr after the onset of status epilepticus. Two days after the treatments, rats were tested in the Morris water maze and 1 week after the cognitive tests, their brains were submitted to histology to perform haematoxylin and eosin staining and glial fibrillary acidic protein (GFAP) immunofluorescence detection. Post-status epilepticus rats exhibited extensive gliosis and cell loss in the hippocampal CA1, CA3 (70% cell loss for both areas) and dentate gyrus (60%). Administration of all drugs reduced cell loss in the hippocampus, with best effects observed in brains slices of diazepam-treated animals, which showed less than 30% of loss in the three areas and decreased GFAP immunolabelling. Treatments improved spatial navigation during training trials and probe trial, with exception of ketamine. Interestingly, in the probe trial, only diazepam-treated animals showed preference for the goal quadrant. Our data point to significant neuroprotective effects of repeated administration of diazepam against status epilepticus-induced cell damage and cognitive disturbances.
Resumo:
Withdrawal from morphine leads to the appearance of extreme anxiety accompanied of several physical disturbances, most of them linked to the activation of brainstem regions such as the locus coeruleus, ventral tegmental area, hypothalamic nuclei and periaqueductal grey (PAG). As anxiety remains one of the main components of morphine withdrawal the present study aimed to evaluating the influence of the dorsal aspects of the PAG on the production of this state, since this structure is well-known to be involved in defensive behaviour elicited by anxiety-evoking stimuli. Different groups of animals were submitted to 10 days of i.p. morphine injections, challenged 2 h after with an i.p. injection of naloxone (0.1 mg/kg), and submitted to the plus-maze, open-field and light-dark transition tests. The effects of morphine withdrawal on anxiety-induced Fos immunolabelling were evaluated in four animals that passed by the light-dark transition test randomly chosen for Fos-protein analysis. Besides the PAG, Fos neural expression was conducted in other brain regions involved in the expression of anxiety-related behaviours. Our results showed that morphine withdrawn rats presented enhanced anxiety accompanied of few somatic symptoms. Increased Fos immunolabelling was noted in brain regions well-known to modulate these states as the prelimbic cortex, nucleus accumbens, amygdala and paraventricular hypothalamus. Increased Fos labelling was also observed in the ventral and dorsal aspects of the PAG, a region involved in anxiety-related processes suggesting that this region could be a common neural substrate enlisted during anxiety evoked by dangerous stimuli as well as those elicited by opiate withdrawal. (c) 2008 Elsevier Inc. All rights reserved,
Intravascular papillary endothelial hyperplasia: Report of 4 cases with immunohistochemical findings
Resumo:
Intravascular papillary endothelial hyperplasia (IPEH) is a benign endothelial proliferation, usually intravascular, that may mimic angiosarcoma. In this report, four new cases of IPEH involving the oral region are described. The affected sites were the lower lip, labial comissure and the submandibular region. After clinical evaluation, the complete removal of the lesions showed a circumscribed and soft mass. Histologically, the major feature was a reactive proliferation of endothelial cells composed of small papillary structures with hypocellular and hyalinized cores arising in an organized thrombus. Immunohistochemical staining for CD34 was strongly positive in endothelial cells. Vimentin and laminin immunolabelling were also consistent with a vascular origin. In order to verify the proliferative potential of the lesions, the Ki-67 antibody was used, revealing low percentage of labeled cells (<20%). No immunoreactivity for GLUT-1 was observed. Since the complete removal is curative, no additional treatment was necessary, and no signs of recurrence had been observed until now. Due to the particular features of IPEH, it is important for pathologists and clinicians to become familiar with this lesion. Additionally, the specific histological arrangement, including the absence of cellular pleomorphism, mitotic activity and necrosis, represents a guide to help in the differential diagnosis. Moreover, the vascular origin and the proliferative index should be assessed by immunohistochemistry in order to provide an accurate diagnosis.