12 resultados para immune activity
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Pteridium aquilinum (bracken fern) is one of the most common plants. Epidemiological studies have revealed a higher risk of certain types of cancers (i.e., esophageal, gastric) in people who consume bracken fern directly ( as crosiers or rhizomes) or indirectly through the consumption of milk from livestock that fed on the plant. In animals, evidence exists regarding the associations between chronic bracken fern intoxication, papilloma virus infection, and the development of carcinomas. While it is possible that some carcinogens in bracken fern could be responsible for these cancers in both humans and animals, it is equally plausible that the observed increases in cancers could be related to induction of an overall immunosuppression by the plant/its various constituents. Under the latter scenario, normal tumor surveillance responses against nascent (non-bracken-induced) cancers or responses against viral infections ( specifically those linked to induction of cancers) might be adversely impacted by continuous dietary exposure to this plant. Therefore, the overall objective of this study was to evaluate the immunomodulatory effects of bracken fern following daily ingestion of its extract by a murine host over a period of 14 ( or up to 30) days. In C57BL/6 mice administered ( by gavage) the extract, histological analyses revealed a significant reduction in splenic white pulp area. Among a variety of immune response parameters/functions assessed in these hosts and isolated cells, both delayed-type hypersensitivity (DTH) analysis and evaluation of IFN gamma. production by NK cells during T(H)1 priming were also reduced. Lastly, the innate response in these hosts-assessed by analysis of NK cell cytotoxic functionality-was also diminished. The results here clearly showed the immunosuppressive effects of P. aquilinum and that many of the functions that were modulated could contribute to the increased risk of cancer formation in exposed hosts.
Resumo:
The temporal organization of mammals presents a daily adjustment to the environmental light/dark cycle. The environmental light detected by the retina adjusts the central clock in the suprachiasmatic nuclei, which innervate the pineal gland through a polysynaptic pathway. During the night, this gland produces and releases the nocturnal hormone melatonin, which circulates throughout the whole body and adjusts several bodily functions according to the existence and duration of darkness. We have previously shown that during the time frame of an inflammatory response, pro-inflammatory cytokines, such as tumor necrosis factor-a, inhibit while anti-inflammatory mediators, such as glucocorticoids, enhance the synthesis of melatonin, interfering in the daily adjustment of the light/dark cycle. Therefore, injury disconnects the organism from environmental cycling, while recovery restores the light/dark information to the whole organism. Here, we extend these observations by evaluating the effect of a mild restraint stress, which did not induce macroscopic gastric lesions. After 2 h of restraint, there was an increase in circulating corticosterone, indicating activation of the hypothalamus-pituitary-adrenal (HPA) axis. In parallel, an increase in melatonin production was observed. Taking into account the data obtained with models of inflammation and stress, we reinforce the hypothesis that the activity of the pineal gland is modulated by the state of the immune system and the HPA axis, implicating the darkness hormone melatonin as a modulator of defense responses.
Resumo:
An acute enteritis is commonly followed by intestinal neuromuscular dysfunction, including prolonged hyperexcitability of enteric neurons. Such motility disorders are associated with maintained increases in immune cells adjacent to enteric ganglia and in the mucosa. However, whether the commonly used animal model, trinitrobenzene sulphonate (TNBS)-induced enteritis, causes histological and immune cell changes similar to human enteric neuropathies is not clear. We have made a detailed study of the mucosal damage and repair and immune cell invasion following intralumenal administration of TNBS. Intestines from untreated, sham-operated and TNBS-treated animals were examined at 3 h to 56 days. At 3 h, the mucosal surface was completely ablated, by 6 h an epithelial covering was substantially restored and by 1 day there was full re-epithelialisation. The lumenal epithelium developed from a squamous cell covering to a fully differentiated columnar epithelium with mature villi at about 7 days. Prominent phagocytic activity of enterocytes occurred at 1-7 days. A surge of eosinophils and T lymphocytes associated with the enteric nerve ganglia occurred at 3 h to 3 days. However, elevated immune cell numbers occurred in the lamina propria of the mucosa until 56 days, when eosinophils were still three times normal. We conclude that the disruption of the mucosal surface that causes TNBS-induced ileitis is brief, a little more than 6 h, and causes a transient immune cell surge adjacent to enteric ganglia. This is much briefer than the enteric neuropathy that ensues. Ongoing mucosal inflammatory reaction may contribute to the persistence of enteric neuropathy.
Resumo:
The reported effects of different families of fatty acids (FA; SFA, MUFA, n-3 and n-6 PUFA) on human health and the importance of macrophage respiratory burst and cytokine release to immune defence led us to examine the influence of palmitic acid (PA), oleic acid (OA), linoleic acid, arachidonic acid, EPA and DHA on macrophage function. We determined fungicidal activity, reactive oxygen species (ROS) and cytokine production after the treatment of J774 cells with non-toxic concentrations of the FA. PA had a late and discrete stimulating effect on ROS production, which may be associated with the reduced fungicidal activity of the cells after treatment with this FA. OA presented a sustained stimulatory effect on ROS production and increased fungicidal activity of the cells, suggesting that enrichment of diets with OA may be beneficial for pathogen elimination. The effects of PUFA on ROS production were time-and dose-dependently regulated, with no evident differences between n-3 and n-6 PUFA. It was worth noting that most changes induced after stimulation of the cells with lipopolysaccharide were suppressed by the FA. The present results suggest that supplementation of the diet with specific FA, not classes of FA, might enable an improvement in host defence mechanisms or a reduction in adverse immunological reactions.
Resumo:
Leptospirosis is a spirochetal zoonotic disease of global distribution with a high incidence in tropical regions. In the last 15 years it has been recognized as an important emerging infectious disease due to the occurrence of large outbreaks in warm-climate countries and, occasionally, in temperate regions. Pathogenic leptospires efficiently colonize target organs after penetrating the host. Their invasiveness is attributed to the ability to multiply in blood, adhere to host cells, and penetrate into tissues. Therefore, they must be able to evade the innate host defense. The main purpose of the present study was to evaluate how several Leptospira strains evade the protective function of the complement system. The serum resistance of six Leptospira strains was analyzed. We demonstrate that the pathogenic strain isolated from infected hamsters avoids serum bactericidal activity more efficiently than the culture-attenuated or the nonpathogenic Leptospira strains. Moreover, both the alternative and the classical pathways of complement seem to be responsible for the killing of leptospires. Serum-resistant and serum-intermediate strains are able to bind C4BP, whereas the serum-sensitive strain Patoc I is not. Surface-bound C4BP promotes factor I-mediated cleavage of C4b. Accordingly, we found that pathogenic strains displayed reduced deposition of the late complement components C5 to C9 upon exposure to serum. We conclude that binding of C4BP contributes to leptospiral serum resistance against host complement.
Resumo:
Dendritic cells (DCs), in peripheral tissues, derive mostly from blood precursors that differentiate into DCs under the influence of the local microenvironment. Monocytes constitute the main known DC precursors in blood and their infiltration into tissues is up-regulated during inflammation. During this process, the local production of mediators, like prostaglandins (PGs), influence significantly DC differentiation and function. In the present paper we show that treatment of blood adherent mononuclear cells with 10 mu M indomethacin, a dose achieved in human therapeutic settings, causes monocytes` progressive death but does not affect DCs viability or cell surface phenotype. This resistance of DCs was observed both for cells differentiated in vitro from blood monocytes and for a population with DCs characteristics already present in blood. This phenomenon could affect the local balance of antigen-presenting cells, influence the induction and pattern of immune responses developed under the treatment with non-steroidal anti-inflammatory drugs and, therefore, deserves further investigation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Recombinant adenovirus or DNA vaccines encoding herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) genetically fused to human papillomavirus type 16 (HPV-16) oncoproteins (E5, E6, and E7) induce antigen-specific CD8(+) T-cell responses and confer preventive resistance to transplantable murine tumor cells (TC-1 cells). In the present report, we characterized some previously uncovered aspects concerning the induction of CD8(+) T-cell responses and the therapeutic anticancer effects achieved in C57BL/6 mice immunized with pgD-E7E6E5 previously challenged with TC-1 cells. Concerning the characterization of the immune responses elicited in mice vaccinated with pgD-E7E6E5, we determined the effect of the CD4(+) T-cell requirement, longevity, and dose-dependent activation on the E7-specific CD8(+) T-cell responses. In addition, we determined the priming/boosting properties of pgD-E7E6E5 when used in combination with a recombinant serotype 68 adenovirus (AdC68) vector encoding the same chimeric antigen. Mice challenged with TC-1 cells and then immunized with three doses of pgD-E7E6E5 elicited CD8(+) T-cell responses, measured by intracellular gamma interferon (IFN-gamma) and CD107a accumulation, to the three HPV-16 oncoproteins and displayed in vivo antigen-specific cytolytic activity, as demonstrated with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled target cells pulsed with oligopeptides corresponding to the H-2D(b)-restricted immunodominant epitopes of the E7, E6, or E5 oncoprotein. Up to 70% of the mice challenged with 5 x 10(5) TC-1 cells and immunized with pgD-E7E6E5 controlled tumor development even after 3 days of tumor cell challenge. In addition, coadministration of pgD-E7E6E5 with DNA vectors encoding pGM-CSF or interleukin-12 (IL-12) enhanced the therapeutic antitumor effects for all mice challenged with TC-1 cells. In conclusion, the present results expand our previous knowledge on the immune modulation properties of the pgD-E7E6E5 vector and demonstrate, for the first time, the strong antitumor effects of the DNA vaccine, raising promising perspectives regarding the development of immunotherapeutic reagents for the control of HPV-16-associated tumors.
Resumo:
Background and Objective: Cytolethal distending toxin (CDT) is a genotoxin produced by Aggregatibacter actinomycetemcomitans. In spite of its association with pathogenesis, little is known about the humoral immune response against the CDT. This study aimed to test whether subgingival colonization and humoral response to A. actinomycetemcomitans would lead to a response against CDT. Material and Methods: Sera from periodontally healthy, localized and generalized aggressive periodontitis and chronic periodontitis subjects (n = 80) were assessed for immunoglobulin G titers to A. actinomycetemcomitans serotypes a/b/c and to each CDT subunit (CdtA, CdtB and CdtC) by ELISA. A. actinomycetemcomitans subgingival levels and neutralization of CDT activity were also analyzed. Results: Sera from 75.0% localized and 81.8% generalized aggressive periodontitis patients reacted to A. actinomycetemcomitans. A response to serotype b was detected in localized (66.7%) and generalized aggressive periodontitis (54.5%). Reactivity to A. actinomycetemcomitans correlated with subgingival colonization (R = 0.75, p < 0.05). There was no correlation between A. actinomycetemcomitans colonization or response to serotypes and the immunoglobulin G response to CDT subunits. Titers of immunoglobulin G to CdtA and CdtB did not differ among groups; however, sera of all generalized aggressive periodontitis patients reacted to CdtC. Neutralization of CDT was not correlated with levels of antibodies to CDT subunits. Conclusion: Response to CdtA and CdtB did not correlate with the periodontal status of the subject in the context of an A. actinomycetemcomitans infection. However, a response to CdtC was found in sera of generalized but not of localized aggressive periodontitis subjects. Differences in response to CdtC between generalized and localized aggressive periodontitis subjects indicate that CDT could be expressed differently by the infecting strains. Alternatively, the antibody response to CdtC could require the colonization of multiple sites.
Resumo:
Arthropods display different mechanisms to protect themselves against infections, among which antimicrobial peptides (AMPs) play an important role, acting directly against invader pathogens. We have detected several factors with inhibitory activity against Candida albicans and Micrococcus luteus on the surface and in homogenate of eggs of the tick Rhipicephalus (Boophilus) microplus. One of the anti-M. luteus factors of the egg homogenate was isolated to homogeneity. Analysis by electrospray mass spectrometry (ESI-MS) revealed that it corresponds to microplusin, an AMP previously isolated from the cell-free hemolymph of X (B.) microplus. Reverse transcription (RT) quantitative polymerase chain reactions (qPCR) showed that the levels of microplusin mRNA gradually increase along ovary development, reaching an impressive highest value three days after the adult females have dropped from the calf and start oviposition. Interestingly, the level of microplusin mRNA is very low in recently laid eggs. An enhance of microplusin gene expression in eggs is observed only nine days after the onset of oviposition, achieving the highest level just before the larva hatching, when the level of expression decreases once again. Fluorescence microscopy analysis using an anti-microplusin serum revealed that microplusin is present among yolk granules of oocytes as well as in the connecting tube of ovaries. These results, together to our previous data. suggest that microplusin may be involved not only in protection of adult female hemocele, but also in protection of the female reproductive tract and embryos, what points this AMP as a considerable target for development of new methods to control R. (B.) microplus as well as the vector-borne pathogens. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Antimicrobial peptides (AMPs) are essential for the innate immune system of eukaryotes, imparting protection against pathogens and their proliferation in host organisms. The recent interest in AMPs as active materials in bionanostructures is due to the properties shown by these biological molecules, such as the presence of an alpha-helix structure and distribution of positive charges along the chain. In this study the antimicrobial peptide dermaseptin 01 (DS 01), from the skin secretion of Phyllomedusa hypochondrialis frogs was immobilized in nanostructured layered films in conjunction with nickel tetrasulfonated phthalocyanines. The leishmanicidal activity of DS 01 was confirmed using kinetic essays, in which DS 01 promoted death of all metacyclic promastigote cells in 45 minutes. Surprisingly, the immobilized DS 01 molecules displayed electroactivity, as revealed by electrochemical experiments, in which an oxidation peak at about 0.61 V was observed for a DS 01 monolayer deposited on top of a conductive electrode. Such electroactivity was used to investigate the sensing abilities of the nanostructured films toward Leishmania. We observed an increase in the oxidation current as a function of number of Leishmania cells in the electrolytic solution at concentrations down to 10(3) cells/mL. The latter is indicative that the use of AMPs immobilized in electroactive nanostructured films may be of interest for applications in the pharmaceutical industry and diagnosis.
Resumo:
The interactions between three different protein antigens and dioctadecyldimethylammonium bromide (DODAB) dispersed in aqueous solutions from probe sonication or adsorbed its one bilayer onto particles was comparatively investigated. The three model proteins were bovine serum albumin (BSA), purified 18 kDa/14 kDa antigens from Taenia crassiceps (18/14-Tcra) and a recombinant, heat-shock protein hsp-18 kDa from Mycobacterium leprae. Protein-DODAB complexes in water solution were characterized by dynamic light scattering for sizing and zeta-potential analysis. Cationic complexes (80-100 nm of mean hydrodynamic diameter) displayed sizes similar to those of DODAB bilayer fragments (BF) in aqueous solution and good colloid stability over a range of DODAB and protein concentrations. The amount of cationic lipid required for attaining zero of zeta-potential at a given protein amount depended on protein nature being smaller for 18 kDa/14 kDa antigens than for BSA. Mean diameters for DODAB/protein complexes increased, whereas zeta-potentials decreased with NaCl or protein concentration. In mice, weak IgG production but significant cellular immune responses were induced by the complexes in comparison to antigens alone or carried by aluminum hydroxide as shown from IgG in serum determined by ELISA, delayed type hypersensitivity reaction from footpad swelling tests and cytokines analysis. The novel cationic adjuvant/protein complexes revealed good colloid stability and potential for vaccine design at a reduced DODAB concentration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The innate immune reaction to tissue injury is a natural process, which can have detrimental effects in the absence of negative feedbacks by glucocorticoids (GCs). Although acute lipopolysaccharide (LPS) challenge is relatively harmless to the brain parenchyma of adult animals, the endotoxin is highly neurotoxic in animals that are treated with the GC receptor antagonist RU486. This study investigated the role of cytokines of the gp130-related family in these effects, because they are essential components of the inflammatory process that provide survival signals to neurons. Intracerebral LPS injection stimulated expression of several members of this family of cytokines, but oncostatin M (Osm) was the unique ligand to be completely inhibited by the RU486 treatment. OSM receptor (Osmr) is expressed mainly in astrocytes and endothelial cells following LPS administration and GCs are directly responsible for its transcriptional activation in the presence of the endotoxin. In a mouse model of demyelination, exogenous OSM significantly modulated the expression of genes involved in the mobilization of oligodendrocyte precursor cells (OPCs), differentiation of oligodendrocyte, and production of myelin. In conclusion, the activation of OSM signaling is a mechanism activated by TLR4 in the presence of negative feedback by GCs on the innate immune system of the brain. OSM absence is associated with detrimental effects of LPS, whereas exogenous OSM favors repair response to demyelinated regions. (C) 2010 Elsevier Inc. All rights reserved.