16 resultados para hydrothermal crystal growth

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth and magnetic properties of Tin Selenide (SnSe) doped with Eu(2+) Sn(1-x)Eu(x)Se (x=2.5%) were investigated. Q-band (34 GHz) electron paramagnetic resonance measurements show that the site symmetry of Eu(2+) at 4.2 K is orthorhombic and the Lande factor was determined to be g=1.99 +/- 0.01. The exchange coupling between nearest-neighbor (NN) Eu(2+) ions was estimated from magnetization and magnetic-susceptibility measurements using a model that takes into account the magnetic contributions of single ions, pairs and triplets. The exchange interaction between Eu(2+) nearest neighbors was found to be antiferromagnetic with an estimated average value of J(p)/k(B) =-0.18 +/- 0.03 K. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High energy band gap hosts doped with lanthanide ions are suitable for optical devices applications To study the potential of Ta(2)O(5) as a host compound pure and Eu(2)O(3)-doped Ta(2)O(5) crystal fibers were grown by the laser-heated pedestal growth technique in diameters ranging from 250 to 2600 pm and in lengths of up to 50 mm The axial temperature gradient at the solid/liquid interface of pure Ta(2)O(5) fibers revealed a critical diameter of 2200 gm above which the fiber cracks X-ray diffraction measurements of the pure Ta(2)O(5) single crystals showed a monoclinic symmetry and a growth direction of [1 (1) over bar 0] An analysis of the pulling rate as a function of the fiber diameter for Eu(2)O(3)-doped Ta(2)O(5) fibers indicated a well defined region in which constitutional supercooling is absent Photoluminescence measurements of pure Ta(2)O(5) crystals using excitation above the band gap (3 8 eV) were dominated by a broad unstructured green band that peaked at 500 nm Three Eu(3+)-related optical centers were identified in the doped samples with nominal concentrations exceeding 1 mol% Two of these centers were consistent with the ion in the monoclinic phase with different oxygen coordinations The third one was visible in the presence of the triclinic phase (C) 2010 Elsevier B V All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic study was made of the synthesis of V(2)O(5)center dot nH(2)O nanostructures, whose morphologies, crystal structure, and amount of water molecules between the layered structures were regulated by strictly controlling the hydrothermal treatment variables. The synthesis involved a direct hydrothermal reaction between V(2)O(5) and H(2)O(2), without the addition of organic surfactant or inorganic ions. The experimental results indicate that high purity nanostructures can be obtained using this simple and clean synthetic route. Oil the basis of a study of hydrothermal treatment variables such as reaction temperature and time, X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) revealed that it was possible to obtain nanoribbons of the V(2)O(5)center dot nH(2)O monoclinic phase and nanowires or nanorods of the V(2)O(5)center dot nH(2)O orthorhombic phase. Thermal gravimetric analysis (TGA) shows also that the water content in the Structure call be controlled at appropriate hydrothermal conditions. Concerning the oxidation state of the vanadium atoms of as-obtained samples, a mixed-valence state composed of V(4+) and V(5+) was observed ill the V(2)O(5)center dot nH(2)O monoclinic phase, while the valence of the vanadium atoms was preferentially 5+ in the V(2)O(5)center dot nH(2)O orthorhombic phase. The X-ray absorption near-edge structure (XANES) results also indicated that the local structure of vanadium possessed a higher degree of symmetry in the V(2)O(5)center dot nH(2)O monoclinic phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this communication, we report on the formation of calcium hexahydroxodizincate dehydrate, CaZn(2)(OH)(6)center dot 2H(2)O (CZO) powders under microwave-hydrothermal (MH) conditions. These powders were analyzed by X-ray diffraction (XRD), Field-emission gum scanning electron microscopy (FEG-SEM), ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD patterns confirmed that the pure CZO phase was obtained after MH processing performed at 130 degrees C for 2 h. FEG-SEM micrographs indicated that the morphological modifications as well as the growth of CZO microparticles are governed by Ostwald-ripening and coalescence mechanisms. UV-vis spectra showed that this material have an indirect optical band gap. The pure CZO powders exhibited an yellow PL emission when excited by 350 nm wavelength at room temperature. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, calcium molybdate (CaMoO(4)) crystals (meso- and nanoscale) were synthesized by the coprecipitation method using different solvent volume ratios (water/ethylene glycol). Subsequently, the obtained suspensions were processed in microwave-assisted hydrothermal/solvothermal systems at 140 degrees C for 1 h. These meso- and nanocrystals processed were characterized by X-ray diffraction (X R I)), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR). ultraviolet visible (UV-vis) absorption spectroscopies, held-emission gun scanning electron microscopy (FEG-SEM). transmission electron microscopy (TEM). and photoluminescence (PL) measurements. X RI) patterns and FT-Raman spectra showed that these meso- and nanocrystals have a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 827 cm(-1), which is associated with the Mo-O anti-symmetric stretching vibrations into the [MoO(4)] clusters. FEG-SEM micrographs indicated that the ethylene glycol concentration in the aqueous solution plays an important role in the morphological evolution of CaMoO(4) crystals. High-resolution TEM micrographs demonstrated that the mesocrystals consist of several aggregated nanoparticles with electron diffraction patterns of monocrystal. In addition, the differences observed in the selected area electron diffraction patterns of CaMoO(4) crystals proved the coexistence of both nano- and mesostructures, First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level were employed in order to understand the band structure find density of states For the CaMoO(4). UV-vis absorption measurements evidenced a variation in optical band gap values (from 3.42 to 3.72 cV) for the distinct morphologies. The blue and green PI. emissions observed in these crystals were ascribed to the intermediary energy levels arising from the distortions on the [MoO(4)] clusters clue to intrinsic defects in the lattice of anisotropic/isotropic crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CaNb(2)O(6) single crystal fibers were grown by the laser-heated pedestal growth technique, directly from the starting reagents. Optically transparent fibers were obtained in the form of rods with elliptical cross-section, free from cracks, impurities, and secondary phases, with an average diameter of 0.4 mm and about 20 mm of length. The fibers grew within the orthorhombic Pbcn columbite structure, with the growth axis nearly parallel to the crystallographic a-direction. The parameters b and c were parallel to the shorter and larger ellipsis axes. A special setup using a microscope was developed to obtain the far-infrared reflectivity spectra of these micrometer-sized fibers, allowing the identification and assignment of 34 of the 38 polar phonons foreseen for the material. From these phonons, the intrinsic dielectric constant ( = 18.2) and quality factor ( of 185 THz) could be estimated, showing the potential of the material for applications in microwave circuitry. These results, along with previous polarized Raman data (Cryst. Growth Des. 2010, 10, 1569), allow us to present a comprehensive set of optical phonon modes and to discuss the potential use of designed CaNb(2)O(6) microcrystals in compact optical devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Semiconductor magnetic quantum dots are very promising structures, with novel properties that find multiple applications in spintronic devices. EuTe is a wide gap semiconductor with NaCl structure, and strong magnetic moments S=7/2 at the half filled 4f(7) electronic levels. On the other hand, SnTe is a narrow gap semiconductor with the same crystal structure and 4% lattice mismatch with EuTe. In this work, we investigate the molecular beam epitaxial growth of EuTe on SnTe after the critical thickness for island formation is surpassed, as a previous step to the growth of organized magnetic quantum dots. The topology and strain state of EuTe islands were studied as a function of growth temperature and EuTe nominal layer thickness. Reflection high energy electron diffraction (RHEED) was used in-situ to monitor surface morphology and strain state. RHEED results were complemented and enriched with atomic force microscopy and grazing incidence X-ray diffraction measurements made at the XRD2 beamline of the Brazilian Synchrotron. EuTe islands of increasing height and diameter are obtained when the EuTe nominal thickness increases, with higher aspect ratio for the islands grown at lower temperatures. As the islands grow, a relaxation toward the EuTe bulk lattice parameter was observed. The relaxation process was partially reverted by the growth of the SnTe cap layer, vital to protect the EuTe islands from oxidation. A simple model is outlined to describe the distortions caused by the EuTe islands on the SnTe buffer and cap layers. The SnTe cap layers formed interesting plateau structures with easily controlled wall height, that could find applications as a template for future nanostructures growth. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A rational strategy was employed for design of an orthorhombic structure of lamivudine with maleic acid. On the basis of the lamivudine saccharinate structure reported in the literature, maleic acid was chosen to synthesize a salt with the anti-HIV drug because of the structural similarities between the salt formers. Maleic acid has an acid-ionization constant of the anti first proton and an arrangement of their hydrogen bonding functionalities similar to those of saccharin. Likewise, there is a saccharin-like conformational rigidity in maleic acid because of the hydrogen-bonded ring formation and the Z-configuration around the C=C double bond. As was conceivably predicted, lamivudine maleate assembles into a structure whose intermolecular architecture is related to that of saccharinate salt of the drug. Therefore, a molecular framework responsible for crystal assembly into a lamivudine saccharinate-like structure could be recognized in the salt formers. Furthermore, structural correlations and structure-solubility relationships were established for lamivudine maleate and saccharinate. Although there is a same molecular framework in maleic acid and saccharin, these salt formers are Structurally different in some aspects. When compared to saccharin, neither out-of-plane SO(2) oxygens nor a benzene group occur in maleic acid. Both features could be related to higher solubility of lamivudine maleate. Here, we also anticipate that multicomponent molecular crystals of lamivudine with other salt formers possessing the molecular framework responsible for crystal assembly can be engineered successfully.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports a direct observation of an interesting split of the (022)(022) four-beam secondary peak into two (022) and (022) three-beam peaks, in a synchrotron radiation Renninger scan (phi-scan), as an evidence of the layer tetragonal distortion in two InGaP/GaAs (001) epitaxial structures with different thicknesses. The thickness, composition, (a perpendicular to) perpendicular lattice parameter, and (01) in-plane lattice parameter of the two epitaxial ternary layers were obtained from rocking curves (omega-scan) as well as from the simulation of the (022)(022) split, and then, it allowed for the determination of the perpendicular and parallel (in-plane) strains. Furthermore, (022)(022) omega:phi mappings were measured in order to exhibit the multiple diffraction condition of this four-beam case with their split measurement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work shows the growth of nordstrandile microcrystals observed by transmission and scanning electron microscopy. Nordstrandite was synthesised from non-crystalline aluminium hydroxide reacted in 20% ethylene glycol/water solution, at room temperature. This material was characterized by TEM, SEM, SAED, XRD and EDS/TEM, during six month and revealed the formation and growth of nordstrandite. Fibrillar pseudoboehmite is the only aluminium hydroxide which could be identified during the first two weeks. The nuclei grow, from complete dissolution/recrystallization of pseudoboehmite fibrils, into platy rectangular microscrystals of nordstrandite. Some tabular microcrystals recrystallise, forming after six months only the mufti-point nordstrandite stars. This electron-optical study suggest that the star shape results from the overlapping of rectangular plates, and pseudoboehmite fibrils act as the precursor of nordstrandite crystallisation in ethylene glycol/water solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, KHSO(4):Mn crystals doped with Mn and K(2)SO(4) were synthesized using an aqueous solution method. The samples were exposed to ionizing radiation in order to observe the effects on their physical properties. Raman spectroscopy was used to identify the structure of the crystals by detecting the vibrational frequencies of the crystalline lattice. Electron paramagnetic resonance (EPR) was used to study the creation of paramagnetic centers arising from exposure to ionizing radiation. This new synthesis method produces high quality K(2)SO(4) and KHSO(4):Mn crystals and allows control of structural, morphological, optical and magnetic properties. (C) 2009 Elsevier B.V. All rights reserved,

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A DNA-like duplex of nucleosides is probable to exist even without the 5`-phosphate groups needed to assemble the chain backbone. However, double-stranded helical structures of nucleosides are unknown. Here, we report a duplex of nucleoside analogs that is spontaneously assembled due to stacking of the neutral and protonated molecules of lamivudine, a nucleoside reverse transcriptase inhibitor (NTRI) widely used in anti-HIV drug combinatory medication. The left-handed lamivudine duplex has features similar to those of i-motif DNA, as the face-to-face base stacking and the helix rise per base pair. Furthermore, the protonation pattern on alternate bases expected for it DNA-like duplex stabilized by pairing of neutral and protonated cytosine fragments was observed for the first time in the lamivudine double-stranded helix. This structure demonstrates that hydrogen bonds can substitute for covalent phosphodiester linkage in the stabilization of the duplex backbone. This interesting example of spontaneous molecular self-organization indicates that the 5`-phosphate group could not be a requirement for duplex assembly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chlortalidone (HIGROTON) is a diuretic drug widely used in antihypertensive therapy. Thus far, only two solid-state polymorphs of chlortalidone have been reported. We elucidated the structure of chlortalidone form I and a new polymorph. This new phase, namely, chlortalidone form III, was also entirely characterized. It was possible to conclude that it is a conformer with a different orientation of the chlorobenzenesulfonamide moiety. Compared to form I, it has a rotation of about 90 degrees on the axis of the C-C bond bridging the substituted phenyl and isoindolinyl rings. This conformational feature is related to the crystal packing patterns of the chlortalidone forms. Furthermore, certain intermolecular hydrogen bonds are present in both polymorphs, giving rise to ribbons with chlortalidone enantiomers alternately placed into them. The chlortalidone form I and form III crystallize in the triclinic space group P (1) over bar as racemic mixtures. Additional conformational details also differentiate the chlortalidone conformers. Slight twists on the isoindolinyl and sulfamyl groups exist. Considering all structural relationships, the fingerprint plots derived from the Hirshfeld surfaces exhibited the characteristics of the chlortalidone form I and form III crystal structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A very unusual triple structural transition pattern below room temperature was observed for the antifilarial drug diethylcarbamazine citrate. Besides the first thermal, crystallographic, and vibrational investigations of this first-line drug used in clinical treatment for lymphatic filariasis, a noteworthy behavior with three structural transformations as a function of temperature was demonstrated by differential scanning calorimetry, Raman spectroscopy, and single-crystal X-ray diffractometry. Our X-ray data on single crystals allow for a complete featuring and understanding of all transitions, since the four structures associated with the three solid-solid phase transformations were accurately determined. Two of three structural transitions show an order-disorder mechanism and temperature hysteresis with exothermic peaks at 224 K (T(1)`) and 213 K (T(2)`) upon cooling and endothermic ones at 248 K (T(1)) and 226 K (T(2)) upon heating. The other transition occurs at 108 K (T(3)) and it is temperature-rate sensitive. Molecular displacements onto the (010) plane and conformational changes of the diethylcarbamazine backbone as a consequence of the C-H center dot center dot center dot N hydrogen bonding formation/cleavage between drug molecules explain the mechanism of the transitions at T(1)`/T(2). However, such changes are observed only on alternate columns of the drug intercalated by citrate chains, which leads to a doubling of the lattice period along the a axis of the 235 K structure with respect to the 150 and 293 K structures. At T(2)`/T(1), these structural alterations occur in all columns of the drug. At T(3), there is a rotation on the axis of the N-C bond between the carbamoyl moiety and an ethyl group of one crystallographically independent diethylcarbamazine molecule besides molecular shifts and other conformational alterations. The impact of this study is based on the fascinating finding in which the versatile capability of structural adaptation dependent on the thermal history was observed for a relatively simple organic salt, diethylcarbamazine citrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the first time, crystals of suitable size for X-ray diffractometry structure determination (Dian important anti-HI V drug were prepared under solvothermal conditions. In this study, the crystal structure of didanosine (2`,3`-dideoxyinosine, ddI) in the form of a hydrate was determined using single-crystal X-ray diffractometry. Powder X-ray diffraction analysis revealed that the solid-state phase of the drug incorporated into pharmaceutical solid dosage forms is isostructural to the solvothermally prepared ddI material, even though they do not exhibit an identical chemical composition due to different water fractions occupying hydrophobic channels formed within the crystal lattice. Two ddI conformers are present in the structure, in agreement with a previous structure elucidation attempt. Concerning the keto enol equilibrium of ddI, our crystal data and vibrational characterizations by Fourier transform infrared (FTIR) and FT-Raman spectroscopy techniques were conclusive to state that both conformers exist in the keto form, contrary to solid-state NMR spectroscopic assignments that suggested ddI molecules occur as enol tautomers. In addition, characterizations by thermal (differential scanning calorimetry) and spectroscopic techniques allowed us to understand the structural similarities and the differences related to the hydration pattern of the nonstoichiometric hydrates.