3 resultados para humic substance

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone morphogenetic protein 9 (BMP-9), a member of the TGF-beta superfamily predominantly expressed in nonparenchymal liver cells, has been demonstrated to improve glucose homeostasis in diabetic mice. Along with this therapeutic effect, BMP-9 was proposed as a candidate for the hepatic insulin-sensitizing substance ( HISS). Whether BMP-9 plays a physiological role in glucose homeostasis is still unknown. In the present study, we show that BMP-9 expression and processing is severely reduced in the liver of insulin-resistant rats. BMP-9 expression and processing was directly stimulated by in situ exposition of the liver to the combination of glucose and insulin and oral glucose in overnight fasted rats. Additionally, prolonged fasting ( 72 h) abrogated refeeding-induced BMP-9 expression and processing. Previous exposition to dexamethasone, a known inductor of insulin resistance, reduced BMP-9 processing stimulated by the combination of insulin and glucose. Finally, we show that neutralization of BMP-9 with an anti-BMP-9 antibody induces glucose intolerance and insulin resistance in 12-h fasted rats. Collectively, the present results demonstrate that BMP-9 plays an important role in the control of glucose homeostasis of the normal rat. Additionally, BMP-9 is expressed and processed in an HISS-like fashion, which is impaired in the presence of insulin resistance. BMP-9 regulation according to the feeding status and the presence of diabetogenic factors reinforces the hypothesis that BMP-9 might exert the role of HISS in glucose homeostasis physiology. ( Endocrinology 149: 6326-6335, 2008)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordered mesoporous silica with cubic structure, type FDU-1, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butilene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)) and tetraethyl orthosilicate (TEOS). Humic acid (HA) was modified to the synthesis process at a concentration of 1.5 mmol per gram of SiO(2). Thermogravimetry, small angle X-ray diffraction, nitrogen adsorption and high resolution transmission electron microscopy were used to characterize the samples. The pristine FDU-1 and FDU-1 with incorporated 1.5 mmol of HA were tested for adsorption of Pb(2+), Cu(2+) and Cd(2+) in aqueous solution. Incorporation of humic acid into the FDU-1 silica afforded an adsorbent with strong affinity for Cd(2+), Cu(2+) and Pb(2+) from single ion solutions. Adsorption of Cu(2+) was significantly enhanced after incorporation of humic acid, a fact that can be explained by the formation of complexes with carboxylic and phenolic groups at low concentrations of the metal cation. The results demonstrated the potential applicability of FDU-1 with incorporated HA in the removal of low concentrations of heavy metal cations from aqueous solution, such as wastewaters, after usual precipitation of metal hydroxides in alkaline medium and proper pH conditioning in the range between 6 and 7. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports experiments involving the electrochemical combustion of humic acid (HA) and removal of algae from pond water. An electrochemical flow reactor with a boron-doped diamond film anode was used and constant current experiments were conducted in batch recirculation mode. The mass transfer characteristics of the electrochemical device were determined by voltammetric experiments in the potential region of water stability, followed by a controlled current experiment in the potential region of oxygen evolution. The average mass transfer coefficient was 5.2 x 10(-5) m s(-1). The pond water was then processed to remove HA and algae in the conditions in which the reaction combustion occurred under mass transfer control. To this end, the mass transfer coefficient was used to estimate the initial limiting current density applied in the electrolytic experiments. As expected, all the parameters analyzed here-solution absorbance at 270 nm, total phenol concentration and total organic carbon concentration-decayed according to first-order kinetics. Since the diamond film anode successfully incinerated organic matter, the electrochemical system proved to be predictable and programmable.