49 resultados para high-affinity IgE receptor
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Understanding the molecular basis of the binding modes of natural and synthetic ligands to nuclear receptors is fundamental to our comprehension of the activation mechanism of this important class of hormone regulated transcription factors and to the development of new ligands. Thyroid hormone receptors (TR) are particularly important targets for pharmaceuticals development because TRs are associated with the regulation of metabolic rates, body weight, and circulating levels of cholesterol and triglycerides in humans. While several high-affinity ligands are known, structural information is only partially available. In this work we obtain structural models of several TR-ligand complexes with unknown structure by docking high affinity ligands to the receptors` ligand binding domain with subsequent relaxation by molecular dynamics simulations. The binding modes of these ligands are discussed providing novel insights into the development of TR ligands. The experimental binding free energies are reasonably well-reproduced from the proposed models using a simple linear interaction energy free-energy calculation scheme.
Eosinophils in bronchial mucosa of asthmatics after allergen challenge: effect of anti-IgE treatment
Resumo:
Anti-IgE, omalizumab, inhibits the allergen response in patients with asthma. This has not been directly related to changes in inflammatory conditions. We hypothesized that anti-IgE exerts its effects by reducing airway inflammation. To that end, the effect of anti-IgE on allergen-induced inflammation in bronchial biopsies in 25 patients with asthma was investigated in a randomized, double-blind, placebo-controlled study. Allergen challenge followed by a bronchoscopy at 24 h was performed at baseline and after 12 weeks of treatment with anti-IgE or placebo. Provocative concentration that causes a 20% fall in forced expiratory volume in 1 s (PC(20)) methacholine and induced sputum was performed at baseline, 8 and 12 weeks of treatment. Changes in the early and late responses to allergen, PC(20), inflammatory cells in biopsies and sputum were assessed. Both the early and late asthmatic responses were suppressed to 15.3% and 4.7% following anti-IgE treatment as compared with placebo (P < 0.002). This was paralleled by a decrease in eosinophil counts in sputum (4-0.5%) and postallergen biopsies (15-2 cells/0.1 mm(2)) (P < 0.03). Furthermore, biopsy IgE+ cells were significantly reduced between both the groups, whereas high-affinity IgE receptor and CD4+ cells were decreased within the anti-IgE group. There were no significant differences for PC(20) methacholine. The response to inhaled allergen in asthma is diminished by anti-IgE, which in bronchial mucosa is paralleled by a reduction in eosinophils and a decline in IgE-bearing cells postallergen without changing PC(20) methacholine. This suggests that the benefits of anti-IgE in asthma may be explained by a decrease in eosinophilic inflammation and IgE-bearing cells.
Resumo:
The role of the mast cell-specific gangliosides in the modulation of the endocytic pathway of Fc epsilon RI was investigated in RBL-2H3 cells and in the ganglioside-deficient cell lines, E5 and D1. MAb BC4, which binds to the alpha subunit of Fc epsilon RI, was used in the analysis of receptor internalization. After incubation with BC4-FITC for 30 min, endocytic vesicles in RBL-2H3 and E5 cells were dispersed in the cytoplasm. After 1 hr, the endocytic vesicles of the RBL-2H3 cells had fused and formed clusters, whereas in the E5 cells, the fusion was slower. In contrast, in D1 cells, the endocytic vesicles were smaller and remained close to the plasma membrane even after 3 hr of incubation. When incubated with BC4-FITC and subsequently imunolabeled for markers of various endocytic compartments, a defect in the endocytic pathway in the E5 and D1 cells became evident. In the D1 cells, this defect was observed at the initial steps of endocytosis. Therefore, the ganglioside derivatives from GD1b are important in the endocytosis of Fc epsilon RI in mast cells. Because gangliosides may play a role in mast cell-related disease processes, they provide an attractive target for drug therapy and diagnosis. (J Histochem Cytochem 59:428-440, 2011)
Resumo:
5-HT(1A) receptor plays an important role in the delayed onset of antidepressant action of a class of selective serotonin reuptake inhibitors. Moreover, 5-HT(1A) receptor levels have been shown to be altered in patients suffering from major depression. In this work, hologram quantitative structure-activity relationship (HQSAR) studies were performed on a series of arylpiperazine compounds presenting affinity to the 5-HT(1A) receptor. The models were constructed with a training set of 70 compounds. The most significant HQSAR model (q(2) = 0.81, r(2) = 0.96) was generated using atoms, bonds, connections, chirality, and donor and acceptor as fragment distinction, with fragment size of 6-9. Predictions for an external test set containing 20 compounds are in good agreement with experimental results showing the robustness of the model. Additionally, useful information can be obtained from the 2D contribution maps.
Resumo:
5-HT(1A) receptor antagonists have been employed to treat depression, but the lack of structural information on this receptor hampers the design of specific and selective ligands. In this study, we have performed CoMFA studies on a training set of arylpiperazines (high affinity 5-HT(1A) receptor ligands) and to produce an effective alignment of the data set, a pharmacophore model was produced using Galahad. A statistically significant model was obtained, indicating a good internal consistency and predictive ability for untested compounds. The information gathered from our receptor-independent pharmacophore hypothesis is in good agreement with results from independent studies using different approaches. Therefore, this work provides important insights on the chemical and structural basis involved in the molecular recognition of these compounds. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Gangliosides are complex glycosphingolipids that are important in many biological processes. The present study investigated the role of gangliosides in the organization of lipid rafts in RBL-2H3 mast cells and in the modulation of mast cell degranulation via Fc epsilon RI. The role of gangliosides was examined using two ganglioside deficient cell lines (B6A4A2III-E5 and B6A4C1III-D1) as well as the parent cell line (RBL-2H3). All three cell lines examined express Fc epsilon RI, Lyn, Syk and LAT. However, only in RBL-2H3 cells were Fc epsilon RI, LAT and alpha-galactosyl derivatives of ganglioside GD(1b) mobilized to lipid raft domains following Fc epsilon RI stimulation. The inhibition of glycosphingolipid synthesis in RBL-2H3 cells also resulted in a decrease in the release of beta-hexosaminidase activity after Fc epsilon RI activation. The two mutant cell lines have a reduced release of beta-hexosaminidase activity after Fc epsilon RI stimulation, but not after exposure to calcium ionophore. These results indicate that the alpha-galactosyl derivatives of ganglioside GD(1b) are important in the initial events of Fc epsilon RI signaling upstream of Ca(2+) influx. Since the initial signaling events occur in lipid rafts and in the mutant cell lines the rafts are disorganized, these results also suggest that these gangliosides contribute to the correct assembly of lipid rafts and are essential for mast cell activation via Fc epsilon RI. (c) 2008 Published by Elsevier Inc.
Resumo:
The Syk tyrosine kinase family plays an essential role in immunoreceptor tyrosine-based activation motif (ITAM) signaling. The binding of Syk to tyrosine-phosphorylated ITAM subunits of immunoreceptors, such as Fc epsilon RI on mast cells, results in a conformational change, with an increase of enzymatic activity of Syk. This conformational change exposes the COOH-terminal tail of Syk, which has three conserved Tyr residues (Tyr-623, Tyr-624, and Tyr-625 of rat Syk). To understand the role of these residues in signaling, wild-type and mutant Syk with these three Tyr mutated to Phe was expressed in Syk-deficient mast cells. There was decreased Fc epsilon RI-induced degranulation, nuclear factor for T cell activation and NF kappa B activation with the mutated Syk together with reduced phosphorylation of MAP kinases p38 and p42/44 ERK. In non-stimulated cells, the mutated Syk was more tyrosine phosphorylated predominantly as a result of autophosphorylation. In vitro, there was reduced binding of mutated Syk to phosphorylated ITAM due to this increased phosphorylation. This mutated Syk from non-stimulated cells had significantly reduced kinase activity toward an exogenous substrate, whereas its autophosphorylation capacity was not affected. However, the kinase activity and the autophosphorylation capacity of this mutated Syk were dramatically decreased when the protein was dephosphorylated before the in vitro kinase reaction. Furthermore, mutation of these tyrosines in the COOH-terminal region of Syk transforms it to an enzyme, similar to its homolog ZAP-70, which depends on other tyrosine kinases for optimal activation. In testing Syk mutated singly at each one of the tyrosines, Tyr-624 but especially Tyr-625 had the major role in these reactions. Therefore, these results indicate that these tyrosines in the tail region play a critical role in regulating the kinase activity and function of Syk.
Resumo:
The blue crab, Callinectes danae, tolerates exposure to a wide salinity range employing mechanisms of compensatory ion uptake when in dilute media. Although the gill (Na(+), K(+))-ATPase is vital to hyperosmoregulatory ability, the interactions occurring at the sites of ATP binding on the molecule itself are unknown. Here, we investigate the modulation by Na(+) and K(+) of homotropic interactions between the ATP-binding sites, and of phosphoenzyme formation of the (Na(+),K(+))-ATPase from the posterior gills of this euryhaline crab. The contribution of the high- and low-affinity ATP-binding sites to maximum velocity was similar for both Na(+) and K(+). However, in contrast to Na(+), a threshold K(+) concentration triggers the appearance of the high-affinity binding sites, displacing the saturation curve to lower ATP concentrations. Further, a low-affinity site for phosphorylation is present on the enzyme. These findings reveal notable differences in the catalytic mechanism of the crustacean (Na(+),K(+))-ATPase compared to the vertebrate enzyme. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
To shed more light on the molecular requirements for recognition of thyroid response elements (TRES) by thyroid receptors (TRs), we compared the specific aspects of DNA TRE recognition by different TR constructs. Using fluorescence anisotropy, we performed a detailed and hierarchical study of TR-TRE binding. This wits done by comparing the binding affinities of three different TR constructs for four different TRE DNA elements, including palindromic sequences and direct repeats (F2, PAL, DR-1, and DR-4) as well as their interactions with nonspecific DNA sequences. The effect of MgCl(2) on suppressing of nonselective DNA binding to TR was also investigated. Furthermore, we determined the dissociation constants of the hTR beta DBD (DNA binding domain) and hTR beta DBD-LBD (DNA binding and ligand binding domains) for specific TRES. We found that a minimum DNA recognition peptide derived from DBD (H1TR) is sufficient for recognition and interaction with TREs, whereas scrambled DNA sequences were unrecognized. Additionally, we determined that the TR DBD binds to F2, PAL, and DR-4 with high affinity and similar K(d) values. The TR DBD-LBD recognizes all the tested TRES but binds preferentially to F2, with even higher affinity. Finally, our results demonstrate the important role played by LBDs in modulating TR-DNA binding.
Resumo:
Leukotrienes (LTs) are potent lipid mediators involved in the control of host defense. LTB(4) induces leukocyte accumulation, enhances phagocytosis and bacterial clearance, and increases NO synthesis. LTB(4) is also important in early effector T cell recruitment that is mediated by LTB(4) receptor 1, the high-affinity receptor for LTB(4). The aims of this study were to evaluate whether LTs are involved in the secondary immune response to vaccination in a murine model of Histoplasma capsulatum infection. Our results demonstrate that protection of wild-type mice immunized with cell-free Ags from H. capsulatum against histoplasmosis was associated with increased LTB(4) and IFN-gamma production as well as recruitment of memory T cells into the lungs. In contrast, cell-free Ag-immunized mice lacking 5-lipoxygenase(-/-), a critical enzyme involved in LT synthesis, displayed a marked decrease on recruitment of memory T cells to the lungs associated with increased synthesis of TGF-beta as well as IL-10. Strikingly, these effects were associated with increased mortality to 5-lipoxygenase(-/-)-infected mice. These data establish an important immunomodulatory role of LTs, in both the primary and secondary immune responses to histoplasmosis. The Journal of Immunology, 2008,181: 8544-8551.
Resumo:
N-Acetylglucosamine (GlcNAc) is the major immunoepitope of group A streptococcal cell wall carbohydrates. Antistreptococcal antibodies cross-reactive with anti-GlcNAc and laminin are present in sera of patients with rheumatic fever. The cross-reactivity of these antibodies with human heart valvular endothelium and the underlying basement membrane has been suggested to be a possible cause of immune-mediated valve lesion. Mannose-binding lectin (MBL) encoded by the MBL2 gene, a soluble pathogen recognition receptor, has high affinity for GlcNAc. We postulated that mutations in exon 1 of the MBL2 gene associated with a deficient serum level of MBL may contribute to chronic severe aortic regurgitation (AR) of rheumatic etiology. We studied 90 patients with severe chronic AR of rheumatic etiology and 281 healthy controls (HC) for the variants of the MBL2 gene at codons 52, 54, and 57 by using a PCR-restriction fragment length polymorphism-based method. We observed a significant difference in the prevalence of defective MBL2 alleles between patients with chronic severe AR and HC. Sixteen percent of patients with chronic severe AR were homozygotes or compound heterozygotes for defective MBL alleles in contrast to 5% for HC (P = 0.0022; odds ratio, 3.5 [ 95% confidence interval, 1.6 to 7.7]). No association was detected with the variant of the MASP2 gene. Our study suggests that MBL deficiency may contribute to the development of chronic severe AR of rheumatic etiology.
Resumo:
Angiotensin (Ang) I-converting enzyme (ACE) is involved in the control of blood pressure by catalyzing the conversion of Ang I into the vasoconstrictor Ang II and degrading the vasodilator peptide bradykinin. Human ACE also functions as a signal transduction molecule, and the binding of ACE substrates or its inhibitors initiates a series of events. In this study, we examined whether Ang II could bind to ACE generating calcium signaling. Chinese hamster ovary cells transfected with an ACE expression vector reveal that Ang II is able to bind with high affinity to ACE in the absence of the Ang II type 1 and type 2 receptors and to activate intracellular signaling pathways, such as inositol 1,4,5-trisphosphate and calcium. These effects could be blocked by the ACE inhibitor, lisinopril. Calcium mobilization was specific for Ang II, because other ACE substrates or products, namely Ang 1-7, bradykinin, bradykinin 1-5, and N-acetyl-seryl-aspartyl-lysyl-proline, did not trigger this signaling pathway. Moreover, in Tm5, a mouse melanoma cell line endogenously expressing ACE but not Ang II type 1 or type 2 receptors, Ang II increased intracellular calcium and reactive oxygen species. In conclusion, we describe for the first time that Ang II can interact with ACE and evoke calcium and other signaling molecules in cells expressing only ACE. These findings uncover a new mechanism of Ang II action and have implications for the understanding of the renin-Ang system. (Hypertension. 2011;57:965-972.) . Online Data Supplement
Resumo:
The human blood fluke Schistosoma mansoni is the primary cause of schistosomiasis, a debilitating disease that affects 200 million individuals in over 70 countries. The biogenic amine serotonin is essential for the survival of the parasite and serotonergic proteins are potential novel drug targets for treating schistosomiasis. Here we characterize two novel serotonin transporter gene transcripts, SmSERT-A and SmSERT-B, from S. mansoni. Southern blot analysis shows that the two mRNAs are the products of different alleles of a single SmSERT gene locus. The two SmSERT forms differ in three amino acid positions near the N-terminus of the protein. Both SmSERTs are expressed in the adult form and in the sporocyst form (infected snails) of the parasite, but are absent from all other stages of the parasite`s complex life cycle. Heterologous expression of the two cDNAs in mammalian cells resulted in saturable, sodium-dependent serotonin transport activity with an apparent affinity for serotonin comparable to that of the human serotonin transporter. Although the two SmSERTs are pharmacologically indistinguishable from each other, efflux experiments reveal notably higher substrate selectivity for serotonin compared with their mammalian counterparts. Several well-established substrates for human SERT including (+/-)MDMA, S-(+)amphetamine, RU 24969, and m-CPP are not transported by SmSERTs, underscoring the higher selectivity of the schistosomal isoforms. Voltage-clamp recordings of SmSERT substrate-elicited currents confirm the substrate selectivity observed in efflux experiments and suggest that it may be possible to exploit the electrogenic nature of SmSERT to screen for compounds that target the parasite in vivo. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Rosiglitazone (RGZ), an oral anti-hyperglycemic agent used for non-insulin-dependent diabetes mellitus, is a high-affinity synthetic agonist for peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Both in vitro and in vivo experiments have also revealed that RGZ possesses anti-inflammatory properties. Therefore, in the present study, we investigated the anti-inflammatory effects of RGZ in a rat model of periodontal disease induced by ligature placed around the mandible first molars of each animal. Male Wister rats were divided into four groups: 1) animals without ligature placement receiving administration of empty vehicle (control); 2) animals with ligature receiving administration of empty vehicle; 3) animals with ligature receiving administration with oral RGZ (10 mg/kg/day); and 4) animals with ligature receiving administration of subcutaneous RGZ (10 mg/kg/day). Thirty days after induction of periodontal disease, the animals were sacrificed, and mandibles and gingival tissues were removed for further analysis. An in vitro assay was also employed to test the inhibitory effects of RGZ on osteoclastogenesis. Histomorphological and immunohistochemical analyses of periodontal tissue demonstrated that RGZ-treated animals presented decreased bone resorption, along with reduced RANKL expression, compared to those animals with ligature, but treated with empty vehicle. Corresponding to such results obtained from in vivo experiments, RGZ also suppressed in vitro osteoclast differentiation in the presence of RANKL in MOCP-5 osteoclast precursor cells, along with the down-regulation of the expression of RANKL-induced TRAP mRNA. These data indicated that RGZ may suppress the bone resorption by inhibiting RANKL-mediated osteoclastogenesis elicited during the course of experimental periodontitis in rats. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics Simulations to investigate unfolding of the LBDs of thyroid hormone receptors (TRs). A molecular description of the denaturation mechanisms is obtained by molecular dynamics Simulations of the TR alpha and TR beta LBDs in the absence and in the presence of the natural ligand Triac. The Simulations Show that the thermal unfolding of the LBD starts with the loss of native contacts and secondary Structure elements, while the Structure remains essentially compact, resembling a molten globule state. This differs From most protein denaturation simulations reported to date and suggests that the folding mechanism may start with the hydrophobic collapse of the TR LBDs. Our results reveal that the stabilities of the LBDs of the TR alpha and TR beta Subtypes are affected to different degrees by the binding of the isoform selective ligand Triac and that ligand binding confers protection against thermal denaturation and unfolding in a subtype specific manner. Our Simulations indicate two mechanisms by which the ligand stabilizes the LBD: (1) by enhancing the interactions between H8 and H 11, and the interaction of the region between H I and the Omega-loop with the core of the LBD, and (2) by shielding the hydrophobic H6 from hydration.