103 resultados para heat kernel,worldline model,perturbative quantum gravity
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
As a laboratory for loop quantum gravity, we consider the canonical quantization of the three-dimensional Chern-Simons theory on a noncompact space with the topology of a cylinder. Working within the loop quantization formalism, we define at the quantum level the constraints appearing in the canonical approach and completely solve them, thus constructing a gauge and diffeomorphism invariant physical Hilbert space for the theory. This space turns out to be infinite dimensional, but separable.
Resumo:
We analyze renormalizability properties of noncommutative (NC) theories with a bifermionic NC parameter. We introduce a new four-dimensional scalar field model which is renormalizable at all orders of the loop expansion. We show that this model has an infrared stable fixed point (at the one-loop level). We check that the NC QED (which is one-loop renormalizable with a usual NC parameter) remains renormalizable when the NC parameter is bifermionic, at least to the extent of one-loop diagrams with external photon legs. Our general conclusion is that bifermionic noncommutativity improves renormalizability properties of NC theories.
Resumo:
We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.
Resumo:
A possible slowing down of the cosmic expansion is investigated through a cosmographic approach. By expanding the luminosity distance to fourth order and fitting the SN Ia data from the most recent compilations (Union, Constitution and Union 2), the marginal likelihood distributions for the deceleration parameter today suggest a recent reduction of the cosmic acceleration and indicate that there is a considerable probability for q(0) > 0. Also in contrast to the prediction of the Lambda CDM model, the cosmographic q(z) reconstruction permits a cosmic expansion history where the cosmic acceleration could already have peaked and be presently slowing down, which would imply that the recent accelerated expansion of the universe is a transient phenomenon. It is also shown that to describe a transient acceleration the luminosity distance needs to be expanded at least to fourth order. The present cosmographic results depend neither on the validity of general relativity nor on the matter-energy contents of the universe.
Resumo:
It is shown that in quantum gravity at finite temperature, the effective potential evaluated in the tadpole approximation can have a local minimum below a certain critical temperature. However, when the leading higher order thermal loop corrections are included, one finds that no static solution exists at high temperature. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Recently, in [3] Horava and Melby-Thompson proposed a nonrelativistic gravity theory with extended gauge symmetry that is free of the spin-0 graviton. We propose a minimal substitution recipe to implement this extended gauge symmetry which reproduces the results obtained by them. Our prescription has the advantage of being manifestly gauge invariant and immediately generalizable to other fields, like matter. We briefly discuss the coupling of gravity with scalar and vector fields found by our method. We show also that the extended gauge invariance in gravity does not force the value of. to be lambda = 1 as claimed in [3]. However, the spin-0 graviton is eliminated even for general lambda.
Resumo:
In this paper, we analyze the action of the gravitational field on the dynamical Casimir effect. We consider a massless scalar field confined in a cuboid cavity placed in a gravitational field described by a static and diagonal metric. With one of the plane mirrors of the cavity allowed to move, we compute the average number of particles created inside the cavity by means of the Bogoliubov coefficients computed through perturbative expansions. We apply our result to the case of an oscillatory motion of the mirror, assuming a weak gravitational field described by the Schwarzschild metric. The regime of parametric amplification is analyzed in detail, demonstrating that our computed result for the mean number of particles created agrees with specific associated cases in the literature. Our results, obtained in the framework of the perturbation theory, are restricted, under resonant conditions, to a short-time limit.
Resumo:
Geodetic observations are affected by the disturbing potential of the luni-solar tide. Among those observations, the value of g obtained from gravimetric survey needs correction by the gravimetric factor. This correction is derived from the Numbers of Love, which depend on the adopted model of Earth. Because of this, it is necessary to update the correction since the gravimetric factor widely used in Brazil as delta = 1.20 does not consider local rheological variations and they are latitude dependent. A discrepancy of about 1% between the observed tidal gravimetric factors d of the ""Trans World Tidal Gravity Profiles"" (TWTGP), related to Brussels fundamental station, and those obtained by recent observations reported by Freitas and Ducarme ( 1991). Experiments based on inertial force effects also reveal a variation of about 0.5% in the observed d. A same order of magnitude difference is obtained for an anelastic Earth model when compared with a viscous-elastic model and even when different frequencies of tidal perturbations are considered. In this paper regression models are presented for gravimetric factors for the lunar components O(1) and M(2) in Brazil. These models were obtained from observations performed at stations belonging to the Brazilian segment of the TWTGP.
Resumo:
Aims. A model-independent reconstruction of the cosmic expansion rate is essential to a robust analysis of cosmological observations. Our goal is to demonstrate that current data are able to provide reasonable constraints on the behavior of the Hubble parameter with redshift, independently of any cosmological model or underlying gravity theory. Methods. Using type Ia supernova data, we show that it is possible to analytically calculate the Fisher matrix components in a Hubble parameter analysis without assumptions about the energy content of the Universe. We used a principal component analysis to reconstruct the Hubble parameter as a linear combination of the Fisher matrix eigenvectors (principal components). To suppress the bias introduced by the high redshift behavior of the components, we considered the value of the Hubble parameter at high redshift as a free parameter. We first tested our procedure using a mock sample of type Ia supernova observations, we then applied it to the real data compiled by the Sloan Digital Sky Survey (SDSS) group. Results. In the mock sample analysis, we demonstrate that it is possible to drastically suppress the bias introduced by the high redshift behavior of the principal components. Applying our procedure to the real data, we show that it allows us to determine the behavior of the Hubble parameter with reasonable uncertainty, without introducing any ad-hoc parameterizations. Beyond that, our reconstruction agrees with completely independent measurements of the Hubble parameter obtained from red-envelope galaxies.
Resumo:
We derive a closed form expression for the sum of all the infrared divergent contributions to the free energy of a gas of gravitons. An important ingredient of our calculation is the use of a gauge fixing procedure such that the graviton propagator becomes both traceless and transverse. This has been shown to be possible, in a previous work, using a general gauge fixing procedure, in the context of the lowest order expansion of the Einstein-Hilbert action, describing noninteracting spin-two fields. In order to encompass the problems involving thermal loops, such as the resummation of the free energy, in the present work, we have extended this procedure to the situations when the interactions are taken into account.
Resumo:
Perturbative Quantum Chromodynamics (pQCD) predicts that the small-x gluons in the hadron wavefunction should form a Color Glass Condensate (CGC), which has universal properties, which are the same for nucleon or nuclei. Making use of the results in V.P. Goncalves, M.S. Kugeratski, M.V.T. Machado, F.S. Navarra, Phys. Lett. B643, 273 (2006), we study the behavior of the anomalous dimension in the saturation models as a function of the photon virtuality and of the scaling variable rQ(s), since the main difference among the known parameterizations are characterized by this quantity.
Resumo:
The momentum distribution of electrons from semileptonic decays of charm and bottom quarks for midrapidity |y|< 0.35 in p+p collisions at s=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range 2 < p(T)< 7 GeV/c. The ratio of the yield of electrons from bottom to that from charm is presented. The ratio is determined using partial D/D -> e(+/-)K(-/+)X (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in p(T). A fixed-order-plus-next-to-leading-log perturbative quantum chromodynamics calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is sigma(bb)=3.2(-1.1)(+1.2)(stat)(-1.3)(+1.4)(syst)mu b.
Resumo:
We report the observation at the Relativistic Heavy Ion Collider of suppression of back-to-back correlations in the direct photon+jet channel in Au+Au relative to p+p collisions. Two-particle correlations of direct photon triggers with associated hadrons are obtained by statistical subtraction of the decay photon-hadron (gamma-h) background. The initial momentum of the away-side parton is tightly constrained, because the parton-photon pair exactly balance in momentum at leading order in perturbative quantum chromodynamics, making such correlations a powerful probe of the in-medium parton energy loss. The away-side nuclear suppression factor, I(AA), in central Au+Au collisions, is 0.32 +/- 0.12(stat)+/- 0.09(syst) for hadrons of 3 < p(T)(h)< 5 in coincidence with photons of 5 < p(T)(gamma)< 15 GeV/c. The suppression is comparable to that observed for high-p(T) single hadrons and dihadrons. The direct photon associated yields in p+p collisions scale approximately with the momentum balance, z(T)equivalent to p(T)(h)/p(T)(gamma), as expected for a measurement of the away-side parton fragmentation function. We compare to Au+Au collisions for which the momentum balance dependence of the nuclear modification should be sensitive to the path-length dependence of parton energy loss.
Resumo:
The PHENIX experiment presents results from the RHIC 2006 run with polarized p + p collisions at root s = 62.4 GeV, for inclusive pi(0) production at midrapidity. Unpolarized cross section results are measured for transverse momenta p(T) = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum chromodynamics calculations are compared with the data, and while the calculations are consistent with the measurements, next-to-leading logarithmic corrections improve the agreement. Double helicity asymmetries A(LL) are presented for p(T) = 1 to 4 GeV/c and probe the higher range of Bjorken x of the gluon (x(g)) with better statistical precision than our previous measurements at root s = 200 GeV. These measurements are sensitive to the gluon polarization in the proton for 0.06 < x(g) < 0.4.
Resumo:
We report on the event structure and double helicity asymmetry (A(LL)) of jet production in longitudinally polarized p + p collisions at root s = 200 GeV. Photons and charged particles were measured by the PHENIX experiment at midrapidity vertical bar eta vertical bar < 0.35 with the requirement of a high-momentum (> 2 GeV/c) photon in the event. Event structure, such as multiplicity, p(T) density and thrust in the PHENIX acceptance, were measured and compared with the results from the PYTHIA event generator and the GEANT detector simulation. The shape of jets and the underlying event were well reproduced at this collision energy. For the measurement of jet A(LL), photons and charged particles were clustered with a seed-cone algorithm to obtain the cluster pT sum (p(T)(reco)). The effect of detector response and the underlying events on p(T)(reco) was evaluated with the simulation. The production rate of reconstructed jets is satisfactorily reproduced with the next-to-leading-order and perturbative quantum chromodynamics jet production cross section. For 4< p(T)(reco) < 12 GeV/c with an average beam polarization of < P > = 49% we measured Lambda(LL) = -0.0014 +/- 0.0037(stat) at the lowest p(T)(reco) bin (4-5 GeV= c) and -0.0181 +/- 0.0282(stat) at the highest p(T)(reco) bin (10-12 GeV= c) with a beam polarization scale error of 9.4% and a pT scale error of 10%. Jets in the measured p(T)(reco) range arise primarily from hard-scattered gluons with momentum fraction 0: 02 < x < 0: 3 according to PYTHIA. The measured A(LL) is compared with predictions that assume various Delta G(x) distributions based on the Gluck-Reya-Stratmann-Vogelsang parameterization. The present result imposes the limit -a.1 < integral(0.3)(0.02) dx Delta G(x, mu(2) = GeV2) < 0.4 at 95% confidence level or integral(0.3)(0.002) dx Delta G(x, mu(2) = 1 GeV2) < 0.5 at 99% confidence level.