1 resultado para health information retrieval
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (14)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (19)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (10)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- Boston University Digital Common (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- Cambridge University Engineering Department Publications Database (26)
- CentAUR: Central Archive University of Reading - UK (6)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (11)
- Cochin University of Science & Technology (CUSAT), India (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons at Florida International University (6)
- DigitalCommons@The Texas Medical Center (24)
- Duke University (7)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Glasgow Theses Service (3)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (12)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (6)
- Infoteca EMBRAPA (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (12)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (41)
- Queensland University of Technology - ePrints Archive (507)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (5)
- Repositorio Institucional UNISALLE - Colombia (1)
- Repositorio Institucional Universidad de Medellín (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (5)
- Universidade de Lisboa - Repositório Aberto (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal (3)
- Université de Montréal, Canada (10)
- University of Michigan (31)
- University of Queensland eSpace - Australia (18)
- University of Southampton, United Kingdom (4)
- University of Washington (4)
- WestminsterResearch - UK (2)
Resumo:
Successful classification, information retrieval and image analysis tools are intimately related with the quality of the features employed in the process. Pixel intensities, color, texture and shape are, generally, the basis from which most of the features are Computed and used in such fields. This papers presents a novel shape-based feature extraction approach where an image is decomposed into multiple contours, and further characterized by Fourier descriptors. Unlike traditional approaches we make use of topological knowledge to generate well-defined closed contours, which are efficient signatures for image retrieval. The method has been evaluated in the CBIR context and image analysis. The results have shown that the multi-contour decomposition, as opposed to a single shape information, introduced a significant improvement in the discrimination power. (c) 2008 Elsevier B.V. All rights reserved,