4 resultados para head and neck carcinoma

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Squamous cell carcinoma is a prevalent head and neck tumor with high mortality. We studied the role played by laminin alpha 1 chain peptide AG73 on migration, invasion, and protease activity of cells (OSCC) from human oral squamous cell carcinoma. Immunohistochemistry and immunofluorescence analyzed expression of laminin alpha 1 chain and MMP9 in oral squamous cells carcinoma in vivo and in vitro. Migratory activity of AG73-treated OSCC cells was investigated by monolayer wound assays and in chemotaxis chambers. AG73-induced invasion was assessed in Boyden chambers. Invasion depends on MMPs. Conditioned media from cells grown on AG73 was subjected to zymography. We searched for AG73 receptors related to these activities in OSCC cells. Immunofluorescence analyzed AG73induced colocalization of syndecan-1 and beta 1 integrin. Cells had these receptors silenced by siRNA, followed by treatment with AG73 and analysis of migration, invasion, and protease activity. Oral squamous cell carcinoma expresses laminin alpha 1 chain and MMP9. OSCC cells treated with AG73 showed increased migration, invasion, and protease activity. AG73 induced colocalization of syndecan-1 and beta 1 integrin. Knockdown of these receptors decreased AG73-dependent migration, invasion, and protease activity. Syndecan-1 and beta 1 integrin signaling downstream of AG73 regulate migration, invasion, and MMP production by OSCC cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laryngeal squamous cell carcinoma is very common in head and neck cancer, with high mortality rates and poor prognosis. In this study, we compared expression profiles of clinical samples from 13 larynx tumors and 10 non-neoplastic larynx tissues using a custom-built cDNA microarray containing 331 probes for 284 genes previously identified by informatics analysis of EST databases as markers of head and neck tumors. Thirty-five genes showed statistically significant differences (SNR >= 11.01, p <= 0.001) in the expression between tumor and non-tumor larynx tissue samples. Functional annotation indicated that these genes are involved in cellular processes relevant to the cancer phenotype, such as apoptosis, cell cycle, DNA repair, proteolysis, protease inhibition, signal transduction and transcriptional regulation. Six of the identified transcripts map to intronic regions of protein-coding genes and may comprise non-annotated exons or as yet uncharacterized long ncRNAs with a regulatory role in the gene expression program of larynx tissue. The differential expression of 10 of these genes (ADCY6, AES, AL2SCR3, CRR9, CSTB, DUSP1, MAP3K5, PLAT, UBL1 and ZNF706) was independently confirmed by quantitative real-time RT-PCR. Among these, the CSTB gene product has cysteine protease inhibitor activity that has been associated with an antimetastatic function. Interestingly, CSTB showed a low expression in the tumor samples analyzed (p<0.0001). The set of genes identified here contribute to a better understanding of the molecular basis of larynx cancer, and provide candidate markers for improving diagnosis, prognosis and treatment of this carcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper shows, for the first time, the membrane expression of the dendritic cell maturation marker CD83 on tumor cells from lung cancer patients. CD83 was also detected on freshly cultured fibroblast-like cells from these tissues and on several adherent human tumor cell lines (lung adenocarcinomas P9, A459 and A549, melanomas A375 and C81-61, breast adenocarcinomas SKBR-3 and MCF-7 and colon carcinoma AR42-J), but not in the non-adherent MOT leukemia cell line. CD83 may have immunosuppressive properties and its expression by cancer cells could have a role in facilitating tumor growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously demonstrated that Bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl) pyridine-N, N`] copper(II) [Cu(isaepy)(2)] was an efficient inducer of the apoptotic mitochondrial pathway. Here, we deeply dissect the mechanisms underlying the ability of Cu(isaepy)(2) to cause mitochondriotoxicity. In particular, we demonstrate that Cu(isaepy)(2) increases NADH-dependent oxygen consumption of isolated mitochondria and that this phenomenon is associated with oxy-radical production and insensitive to adenosine diphosphate. These data indicate that Cu(isaepy)(2) behaves as an uncoupler and this property is also confirmed in cell systems. Particularly, SH-SY5Y cells show: (i) an early loss of mitochondrial transmembrane potential; (ii) a decrease in the expression levels of respiratory complex components and (iii) a significant adenosine triphosphate (ATP) decrement. The causative energetic impairment mediated by Cu(isaepy)(2) in apoptosis is confirmed by experiments carried out with rho(0) cells, or by glucose supplementation, where cell death is significantly inhibited. Moreover, gastric and cervix carcinoma AGS and HeLa cells, which rely most of their ATP production on oxidative phosphorylation, show a marked sensitivity toward Cu(isaepy)(2). Adenosine monophosphate-activated protein kinase (AMPK), which is activated by events increasing the adenosine monophosphate: ATP ratio, is deeply involved in the apoptotic process because the overexpression of its dominant/negative form completely abolishes cell death. Upon glucose supplementation, AMPK is not activated, confirming its role as fuel-sensing enzyme that positively responds to Cu(isaepy)(2)-mediated energetic impairment by committing cells to apoptosis. Overall, data obtained indicate that Cu(isaepy)(2) behaves as delocalized lipophilic cation and induces mitochondrial-sited reactive oxygen species production. This event results in mitochondrial dysfunction and ATP decrease, which in turn triggers AMPK-dependent apoptosis.