55 resultados para gridded rainfall
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Convectively coupled Kelvin waves over the South American continent are examined through the use of temporal and spatial filtering of reanalysis, satellite, and gridded rainfall data. They are most prominent from November to April, the season analyzed herein. The following two types of events are isolated: those that result from preexisting Kelvin waves over the eastern Pacific Ocean propagating into the continent, and those that apparently originate over Amazonia, forced by disturbances propagating equatorward from central and southern South America. The events with precursors in the Pacific are mainly upper-level disturbances, with almost no signal at the surface. Those events with precursors over South America, on the other hand, originate as upper-level synoptic wave trains that pass over the continent and resemble the ""cold surges`` documented by Garreaud and Wallace. As the wave train propagates over the Andes, it induces a southerly low-level wind that advects cold air to the north. Precipitation associated with a cold front reaches the equator a few days later and subsequently propagates eastward with the characteristics of a Kelvin wave. The structures of those waves originating over the Pacific are quite similar to those originating over South America as they propagate to eastern South America and into the Atlantic. South America Kelvin waves that originate over neither the Pacific nor the midlatitudes of South America can also be identified. In a composite sense, these form over the eastern slope of the Andes Mountains, close to the equator. There are also cases of cold surges that reach the equator yet do not form Kelvin waves. The interannual variability of the Pacific-originating events is related to sea surface temperatures in the central-eastern Pacific Ocean. When equatorial oceanic conditions are warm, there tends to be an increase in the number of disturbances that reach South America from the Pacific.
Resumo:
This paper presents a new statistical algorithm to estimate rainfall over the Amazon Basin region using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm relies on empirical relationships derived for different raining-type systems between coincident measurements of surface rainfall rate and 85-GHz polarization-corrected brightness temperature as observed by the precipitation radar (PR) and TMI on board the TRMM satellite. The scheme includes rain/no-rain area delineation (screening) and system-type classification routines for rain retrieval. The algorithm is validated against independent measurements of the TRMM-PR and S-band dual-polarization Doppler radar (S-Pol) surface rainfall data for two different periods. Moreover, the performance of this rainfall estimation technique is evaluated against well-known methods, namely, the TRMM-2A12 [ the Goddard profiling algorithm (GPROF)], the Goddard scattering algorithm (GSCAT), and the National Environmental Satellite, Data, and Information Service (NESDIS) algorithms. The proposed algorithm shows a normalized bias of approximately 23% for both PR and S-Pol ground truth datasets and a mean error of 0.244 mm h(-1) ( PR) and -0.157 mm h(-1)(S-Pol). For rain volume estimates using PR as reference, a correlation coefficient of 0.939 and a normalized bias of 0.039 were found. With respect to rainfall distributions and rain area comparisons, the results showed that the formulation proposed is efficient and compatible with the physics and dynamics of the observed systems over the area of interest. The performance of the other algorithms showed that GSCAT presented low normalized bias for rain areas and rain volume [0.346 ( PR) and 0.361 (S-Pol)], and GPROF showed rainfall distribution similar to that of the PR and S-Pol but with a bimodal distribution. Last, the five algorithms were evaluated during the TRMM-Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) 1999 field campaign to verify the precipitation characteristics observed during the easterly and westerly Amazon wind flow regimes. The proposed algorithm presented a cumulative rainfall distribution similar to the observations during the easterly regime, but it underestimated for the westerly period for rainfall rates above 5 mm h(-1). NESDIS(1) overestimated for both wind regimes but presented the best westerly representation. NESDIS(2), GSCAT, and GPROF underestimated in both regimes, but GPROF was closer to the observations during the easterly flow.
Resumo:
Urban rainfall-runoff residuals contain metals such as Cr, Zn, Cu, As, Pb and Cd and are thus reasonable candidates for treatment using Portland cement-based solidification-stabilization (S/S). This research is a study of S/S of urban storm water runoff solid residuals in Portland cement with quicklime and sodium bentonite additives. The solidified residuals were analyzed after 28 days of hydration time using X-ray powder diffraction (XRD) and solid-state Si-29 nuclear magnetic resonance (NMR) spectroscopy. X-ray diffraction (XRD) results indicate that the main cement hydration products are ettringite, calcium hydroxide and hydrated calcium silicates. Zinc hydroxide and lead and zinc silicates are also present due to the reactions of the waste compounds with the cement and its hydration products. Si-29 NMR analysis shows that the coarse fraction of the waste apparently does not interfere with cement hydration, but the fine fraction retards silica polymerization.
Resumo:
The objective of this work was to carry a descriptive analysis in the monthly precipitation of rainfall stations from Rio de Janeiro State, Brazil, using data of position and dispersion and graphical analyses, and to verify the presence of seasonality and trend in these data, with a study about the application of models of time series. The descriptive statistics was to characterize the general behavior of the series in three stations selected which present consistent historical series. The methodology of analysis of variance in randomized blocks and the determination of models of multiple linear regression, considering years and months as predictors variables, disclosed the presence of seasonality, what allowed to infer on the occurrence of repetitive natural phenomena throughout the time and absence of trend in the data. It was applied the methodology of multiple linear regression to removal the seasonality of these time series. The original data had been deducted from the estimates made by the adjusted model and the analysis of variance in randomized blocks for the residues of regression was preceded again. With the results obtained it was possible to conclude that the monthly rainfall present seasonality and they don`t present trend, the analysis of multiple regression was efficient in the removal of the seasonality, and the rainfall can be studied by means of time series.
Resumo:
The mechanisms resulting in large daily rainfall events in Northeast Brazil are analyzed using data filtering to exclude periods longer than 30 days. Composites of circulation fields that include all independent events do not reveal any obvious forcing mechanisms as multiple patterns contribute to Northeast Brazil precipitation variability. To isolate coherent patterns, subsets of events are selected based on anomalies that precede the Northeast Brazil precipitation events at different locations. The results indicate that at 10 degrees S, 40 degrees W, the area of lowest annual rainfall in Brazil, precipitation occurs mainly in association with trailing midlatitude synoptic wave trains originating in either hemisphere. Closer to the equator at 5 degrees S, 37.5 degrees W, an additional convection precursor is found to the west, with a spatial structure consistent with that of a Kelvin wave. Although these two sites are located within only several hundred kilometers of each other and the midlatitude patterns that induce precipitation appear to be quite similar, the dates on which large precipitation anomalies occur at each location are almost entirely independent, pointing to separate forcing mechanisms.
Resumo:
The authors simulated the effects of Amazonian mesoscale deforestation in the boundary layer and in rainfall with the Brazilian Regional Atmospheric Modeling System (BRAMS) model. They found that both the area and shape (with respect to wind incidence) of deforestation and the soil moisture status contributed to the state of the atmosphere during the time scale of several weeks, with distinguishable patterns of temperature, humidity, and rainfall. Deforestation resulted in the development of a three-dimensional thermal cell, the so-called deforestation breeze, slightly shifted downwind to large-scale circulation. The boundary layer was warmer and drier above 1000-m height and was slightly wetter up to 2000-m height. Soil wetness affected the circulation energetics proportionally to the soil dryness (for soil wetness below similar to 0.6). The shape of the deforestation controlled the impact on rainfall. The horizontal strips lined up with the prevailing wind showed a dominant increase in rainfall, significant up to about 60 000 km(2). On the other hand, in the patches aligned in the opposite direction (north-south), there was both increase and decrease in precipitation in two distinct regions, as a result of clearly separated upward and downward branches, which caused the precipitation to increase for patches up to 15 000 km(2). The authors` estimates for the size of deforestation impacting the rainfall contributed to fill up the low spatial resolution in other previous studies.
Resumo:
This work is an assessment of frequency of extreme values (EVs) of daily rainfall in the city of Sao Paulo. Brazil, over the period 1933-2005, based on the peaks-over-threshold (POT) and Generalized Pareto Distribution (GPD) approach. Usually. a GPD model is fitted to a sample of POT Values Selected With a constant threshold. However. in this work we use time-dependent thresholds, composed of relatively large p quantities (for example p of 0.97) of daily rainfall amounts computed from all available data. Samples of POT values were extracted with several Values of p. Four different GPD models (GPD-1, GPD-2, GPD-3. and GDP-4) were fitted to each one of these samples by the maximum likelihood (ML) method. The shape parameter was assumed constant for the four models, but time-varying covariates were incorporated into scale parameter of GPD-2. GPD-3, and GPD-4, describing annual cycle in GPD-2. linear trend in GPD-3, and both annual cycle and linear trend in GPD-4. The GPD-1 with constant scale and shape parameters is the simplest model. For identification of the best model among the four models WC used rescaled Akaike Information Criterion (AIC) with second-order bias correction. This criterion isolates GPD-3 as the best model, i.e. the one with positive linear trend in the scale parameter. The slope of this trend is significant compared to the null hypothesis of no trend, for about 98% confidence level. The non-parametric Mann-Kendall test also showed presence of positive trend in the annual frequency of excess over high thresholds. with p-value being virtually zero. Therefore. there is strong evidence that high quantiles of daily rainfall in the city of Sao Paulo have been increasing in magnitude and frequency over time. For example. 0.99 quantiles of daily rainfall amount have increased by about 40 mm between 1933 and 2005. Copyright (C) 2008 Royal Meteorological Society
Resumo:
The frequency of extreme rainfall events in Southern Brazil is impacted by Ell Nino - Southern Oscillation (ENSO) episodes, especially in austral spring. There are two areas in which this impact is more significant: one is on the coast, where extreme events are more frequent during El Nino (EN) and the other one extends inland, where extreme events increase during EN and decrease during La Nina (LN). Atmospheric circulation patterns associated with severe rainfall in those areas are similar (opposite) to anomalous patterns characteristic of EN (LN) episodes, indicating why increase (decrease) of extreme events in EN (LN) episodes is favoured. The most recurrent precipitation patterns during extreme rainfall events in each of these areas are disclosed by Principal Component Analysis (PCA) and evidence the separation between extreme events in these areas: a severe precipitation event generally does not occur simultaneously in the coast and inland, although they may Occur inland and in the coastal region in sequence. Although EN predominantly enhances extreme rainfall, there are EN years in which fewer severe events occur than the average of neutral years, and also the enhancement of extreme rainfall is not uniform for different EN episodes, because the interdecadal non-ENSO variability also modulates significantly the frequency of extreme events in Southern Brazil. The inland region, which is more affected, shows increase (decrease) of extreme rainfall in association with the negative (positive) phase of the Atlantic Multidecadal Variability, with the negative (positive) phase of the Pacific Multidecadal Variability and with the positive (negative) phase of the Pacific Interdecadal Variability. Copyright (C) 2008 Royal Meteorological Society
Resumo:
This work analyzes high-resolution precipitation data from satellite-derived rainfall estimates over South America, especially over the Amazon Basin. The goal is to examine whether satellite-derived precipitation estimates can be used in hydrology and in the management of larger watersheds of South America. High spatial-temporal resolution precipitation estimates obtained with the CMORPH method serve this purpose while providing an additional hydrometeorological perspective on the convective regime over South America and its predictability. CMORPH rainfall estimates at 8-km spatial resolution for 2003 and 2004 were compared with available rain gauge measurements at daily, monthly, and yearly accumulation time scales. The results show the correlation between satellite-derived and gauge-measured precipitation increases with accumulation period from daily to monthly, especially during the rainy season. Time-longitude diagrams of CMORPH hourly rainfall show the genesis, strength, longevity, and phase speed of convective systems. Hourly rainfall analyses indicate that convection over the Amazon region is often more organized than previously thought, thus inferring that basin scale predictions of rainfall for hydrological and water management purposes have the potential to become more skillful. Flow estimates based on CMORPH and the rain gauge network are compared to long-term observed average flow. The results suggest this satellite-based rainfall estimation technique has considerable utility. Other statistics for monthly accumulations also suggest CMORPH can be an important source of rainfall information at smaller spatial scales where in situ observations are lacking.
Resumo:
Seasonal relationship between the Southern Annular Mode (SAM) and the spatial distribution of the cyclone systems over Southern Hemisphere is investigated for the period 1980 to 1999. In addition, seasonal frontogenesis and rainfall distribution over South America and South Atlantic Ocean during different SAM phases were also analyzed. It is observed that during negative SAM phases the cyclone trajectories move northward when compared to the positive one, and in the South America and South Atlantic sector there is intense frontogenetic activity and positive anomaly precipitation over the Southeast of the South America. In general, SAM positive phase shows opposite signals.
Resumo:
This article deals with the scavenging processes modeling of the particulate sulfate and the gas sulfur dioxide, emphasizing the synoptic conditions at different sampling sites in order to verify the domination of the in-cloud or below-cloud scavenging processes in the Metropolitan Area of São Paulo (RMSP). Three sampling sites were chosen: GV (Granja Viana) at RMSP surroundings, IAG-USP and Mackenzie (RMSP center). Basing on synoptic conditions, it was chosen a group of events where the numerical modeling, a simple scavenging model, was used. These synoptic conditions were usually convective cloud storms, which are usual at RMSP. The results show that the in-cloud processes were dominant (80%) for sulfate/sulfur dioxide scavenging processes, with below-cloud process indicating around 20% of the total. Clearly convective events, with total rainfall higher than 20 mm, are better modeled than the stratiform events, with correlation coefficient of 0.92. There is also a clear association with events presenting higher rainfall amount and the ratio between modeled and observed data set with correlation coefficient of 0.63. Additionally, the suburb sampling site, GV, as expected due to the pollution source distance, presents in general smaller amount of rainwater sulfate (modeled and observed) than the center sampling site, Mackenzie, where the characterization event explains partially the rainfall concentration differences.
Resumo:
Um evento extremo de precipitação ocorreu na primeira semana do ano 2000, de 1º a 5 de janeiro, no Vale do Paraíba, parte leste do Estado de São Paulo, Brasil, causando enorme impacto socioeconômico, com mortes e destruição. Este trabalho estudou este evento em 10 estações meteorológicas selecionadas que foram consideradas como aquelas tendo dados mais homogêneos do Que outras estações na região. O modelo de distribuição generalizada de Pareto (DGP) para valores extremos de precipitação de 5 dias foi desenvolvido, individualmente para cada uma dessas estações. Na modelagem da DGP, foi adotada abordagem não-estacionaria considerando o ciclo anual e tendência de longo prazo como co-variaveis. Uma conclusão desta investigação é que as quantidades de precipitação acumulada durante os 5 dias do evento estudado podem ser classificadas como extremamente raras para a região, com probabilidade de ocorrência menor do que 1% para maioria das estações, e menor do que 0,1% em três estações.
Resumo:
The pollutant transference among reservoirs atmosphere-hydrosphere, relevant to the atmospheric chemistry, depends upon scavenging coefficient (Λ) calculus, which depends on the raindrop size distribution as well as on the rainfall systems, both different to each locality. In this work, the Λ calculus will be evaluated to gas SO2 and particulate matter fine and coarse among five sites in Germany and two in Brazil. The results show three possible classifications in function of Λ, comparable to literature, however with a greater range due to the differences of rainfall system sites. This preliminary study supports future researches
Resumo:
Rainfall samples collected in the downtown area of São Paulo city, during 2003, exhibited average concentrations of cadmium, lead and copper of 1.33, 8.52 and 49.5 nmol L-1, respectively. Among the major ions, NH4+ was the predominant species followed by NO3-, SO4(2-) and Ca2+, with volume weighed mean (VWM) concentrations of 37.1, 20.1, 11.9 and 10.8 µmol L-1, respectively. All the determined species showed high inter-events variability, including free H+ ions whose VWM concentration was 4.03 µmol L-1, corresponding to a pH value of 5.39.
Resumo:
Este trabalho avalia o desempenho de previsões sazonais do modelo climático regional RegCM3, aninhado ao modelo global CPTEC/COLA. As previsões com o RegCM3 utilizaram 60 km de resolução horizontal num domínio que inclui grande parte da América do Sul. As previsões do RegCM3 e CPTEC/COLA foram avaliadas utilizando as análises de chuva e temperatura do ar do Climate Prediction Center (CPC) e National Centers for Enviromental Prediction (NCEP), respectivamente. Entre maio de 2005 e julho de 2007, 27 previsões sazonais de chuva e temperatura do ar (exceto a temperatura do CPTEC/COLA, que possui 26 previsões) foram avaliadas em três regiões do Brasil: Nordeste (NDE), Sudeste (SDE) e Sul (SUL). As previsões do RegCM3 também foram comparadas com as climatologias das análises. De acordo com os índices estatísticos (bias, coeficiente de correlação, raiz quadrada do erro médio quadrático e coeficiente de eficiência), nas três regiões (NDE, SDE e SUL) a chuva sazonal prevista pelo RegCM3 é mais próxima da observada do que a prevista pelo CPTEC/COLA. Além disto, o RegCM3 também é melhor previsor da chuva sazonal do que da média das observações nas três regiões. Para temperatura, as previsões do RegCM3 são superiores às do CPTEC/COLA nas áreas NDE e SUL, enquanto o CPTEC/COLA é superior no SDE. Finalmente, as previsões de chuva e temperatura do RegCM3 são mais próximas das observações do que a climatologia observada. Estes resultados indicam o potencial de utilização do RegCM3 para previsão sazonal, que futuramente deverá ser explorado através de previsão por conjunto.