82 resultados para green house gas
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This study had the following objectives: to induce and describe symptoms of deficiency of boron (B), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo) and zinc (Zn), determining the effect on the mineral composition of leaves. The experiment was developed in a green house and used diagnosis technique by subtraction. The experimental design usedn was a randomized blocks, with seven treatments and three replicates. It was verified that micronutrient omission led to morphological alterations which, in turn, caused visual symptoms. The symptoms caused by the omission of Cu, Mn and Zn were the first to appear, and were followed by those of B, Fe and Mo. The omission of B, Mn and Zn was responsible for the more pronounced reduction in height and stem diameter.
Resumo:
As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O(3), NO, NO(2), CO, VOC, CO(2), and H(2)O. Aerosol loads were characterized by concentrations of total aerosol number (CN) and cloud condensation nuclei (CCN), and by light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios within the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h(-1). Within the plume core, aerosol concentrations were strongly enhanced, with Delta CN/Delta CO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. Delta CN/Delta CO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60-80% at 0.6% supersaturation), the CCN/CN ratios within the plume indicated that only a small fraction (16 +/- 12 %) of the plume particles were CCN. The fresh plume aerosols showed relatively weak light scattering efficiency. The CO-normalized CCN concentrations and light scattering coefficients increased with plume age in most cases, suggesting particle growth by condensation of soluble organic or inorganic species. We used a Single Column Chemistry and Transport Model (SCM) to infer the urban pollution emission fluxes of Manaus City, implying observed mixing ratios of CO, NO(x) and VOC. The model can reproduce the temporal/spatial distribution of ozone enhancements in the Manaus plume, both with and without accounting for the distinct (high NO(x)) contribution by the power plants; this way examining the sensitivity of ozone production to changes in the emission rates of NO(x). The VOC reactivity in the Manaus region was dominated by a high burden of biogenic isoprene from the background rainforest atmosphere, and therefore NO(x) control is assumed to be the most effective ozone abatement strategy. Both observations and models show that the agglomeration of NO(x) emission sources, like power plants, in a well-arranged area can decrease the ozone production efficiency in the near field of the urban populated cores. But on the other hand remote areas downwind of the city then bear the brunt, being exposed to increased ozone production and N-deposition. The simulated maximum stomatal ozone uptake fluxes were 4 nmol m(-2) s(-1) close to Manaus, and decreased only to about 2 nmol m(-2) s(-1) within a travel distance >1500 km downwind from Manaus, clearly exceeding the critical threshold level for broadleaf trees. Likewise, the simulated N deposition close to Manaus was similar to 70 kg N ha(-1) a(-1) decreasing only to about 30 kg N ha(-1) a(-1) after three days of simulation.
Resumo:
Using a combination of density functional theory and recursive Green's functions techniques, we present a full description of a large scale sensor, accounting for disorder and different coverages. Here, we use this method to demonstrate the functionality of nitrogen-rich carbon nanotubes as ammonia sensors as an example. We show how the molecules one wishes to detect bind to the most relevant defects on the nanotube, describe how these interactions lead to changes in the electronic transport properties of each isolated defect, and demonstrate that there are significative resistance changes even in the presence of disorder, elucidating how a realistic nanosensor works.
Resumo:
The Brazilian Amazon is one of the most rapidly developing agricultural frontiers in the world. The authors assess changes in cropland area and the intensification of cropping in the Brazilian agricultural frontier state of Mato Grosso using remote sensing and develop a greenhouse gas emissions budget. The most common type of intensification in this region is a shift from single-to double-cropping patterns and associated changes in management, including increased fertilization. Using the enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, the authors created a green-leaf phenology for 2001-06 that was temporally smoothed with a wavelet filter. The wavelet-smoothed green-leaf phenology was analyzed to detect cropland areas and their cropping patterns. The authors document cropland extensification and double-cropping intensification validated with field data with 85% accuracy for detecting croplands and 64% and 89% accuracy for detecting single-and double-cropping patterns, respectively. The results show that croplands more than doubled from 2001 to 2006 to cover about 100 000 km(2) and that new double-cropping intensification occurred on over 20% of croplands. Variations are seen in the annual rates of extensification and double-cropping intensification. Greenhouse gas emissions are estimated for the period 2001-06 due to conversion of natural vegetation and pastures to row-crop agriculture in Mato Grosso averaged 179 Tg CO(2)-e yr(-1),over half the typical fossil fuel emissions for the country in recent years.
Resumo:
The aim of this study was to evaluate the gamma radiation effects on green tea odor volatiles in green tea at doses of 0, 5, 10, 15 and 20 kGy. The volatile organic compounds were extracted by hydrodistillation and analyzed by GC/MS. The green tea had a large influence on radiation effects, increasing the identified volatiles in relation to control samples. The dose of 10 kGy was responsible to form the majority of new odor compounds following by 5 and 20 kGy. However, the dose of 5 kGy was the dose that degraded the majority of volatiles in non-irradiated samples, following by 20 kGy. The dose of 15 kGy showed has no effect on odor volatiles. The gamma radiation, at dose up to 20 kGy, showed statistically no difference between irradiated and non irradiated green tea on odors compounds. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Ethylene oxide (EO) is used to sterilize Oxygenator and Tubing applied to heart surgery. Residual levels of EO and its derivatives, ethylene chlorohydrin (ECH) and ethylene glycol (EG), may be hazardous to the patients. Therefore, it must be removed by the aeration process. This study aimed to estimate the minimum aeration time for these devices to attain safe limits for use (avoiding excessive aeration time) and to evaluate the Green Fluorescent Protein (GFP) as a biosensor capable of best indicating the distribution and penetration of EO gas throughout the sterilization chamber. Sterilization cycles of 2, 4, and 8 h were monitored by Bacillus atrophaeus ATCC 9372 as a biological indicator (131) and by the GFP. Residual levels of EO, ECH, and EG were determined by gas chromatography (GC), and the residual dissipation was studied. Safe limits were reached right after the sterilization process for Oxygenator and after 204 h of aeration for Tubing. In the 2 h cycle, the GFP concentration decreased from 4.8 (+/- 3.2)% to 7.5 (+/- 2.5)%. For the 4 h cycle, the GFP concentration decreased from 17.4 (+/- 3.0)% to 21.5 (+/- 6.8)%, and in the 8 h cycle, it decreased from 22.5 (+/- 3.2)% to 23.9 (+/- 3.9)%. This finding showed the potentiality for GFP applications as an EO biosensor. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 9113: 626-630, 2009
Resumo:
Since the advent of the postgenomic era, efforts have focused on the development of rapid strategies for annotating plant genes of unknown function. Given its simplicity and rapidity, virus-induced gene silencing (VIGS) has become one of the preeminent approaches for functional analyses. However, several problems remain intrinsic to the use of such a strategy in the study of both metabolic and developmental processes. The most prominent of these is the commonly observed phenomenon of ""sectoring"" the tissue regions that are not effectively targeted by VIGS. To better discriminate these sectors, an effective marker system displaying minimal secondary effects is a prerequisite. Utilizing a VIGS system based on the tobacco rattle virus vector, we here studied the effect of silencing the endogenous phytoene desaturase gene (pds) and the expression and subsequent silencing of the exogenous green fluorescence protein (gfp) on the metabolism of Arabidopsis (Arabidopsis thaliana) leaves and tomato (Solanum lycopersicum) fruits. In leaves, we observed dramatic effects on primary carbon and pigment metabolism associated with the photobleached phenotype following the silencing of the endogenous pds gene. However, relatively few pleiotropic effects on carbon metabolism were observed in tomato fruits when pds expression was inhibited. VIGS coupled to gfp constitutive expression revealed no significant metabolic alterations after triggering of silencing in Arabidopsis leaves and a mild effect in mature green tomato fruits. By contrast, a wider impact on metabolism was observed in ripe fruits. Silencing experiments with an endogenous target gene of interest clearly demonstrated the feasibility of cosilencing in this system; however, carefully constructed control experiments are a prerequisite to prevent erroneous interpretation.
Resumo:
The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the mu g m(-3) range) and their variations with sampling site and time In this work a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE) a quick separation technique that requires nothing more than some nanoliters of sample and when combined with capacitively coupled contactless conductometric detection (C(4)D) is particularly favorable for ionic species that do not absorb in the UV-vis region like the target analytes formaldehyde formic acid acetic acid and ammonium The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry s constant such as formaldehyde and carboxylic acids or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8 3 nLs(-1)) while the sample was aspirated through the annular gap of the concentric tubes at 25 mLs(-1) A second unit in all similar to the CMDS was operated as a capillary membrane diffusion emitter (CMDE) generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS The fluids of the system were driven with inexpensive aquarium air pumps and the collected samples were stored in vials cooled by a Peltier element Complete protocols were developed for the analysis in air of NH(3) CH(3)COOH HCOOH and with a derivatization setup CH(2)O by associating the CMDS collection with the determination by CE-C(4)D The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot s reaction Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW) All techniques and methods of this work are in line with the green analytical chemistry trends (C) 2010 Elsevier B V All rights reserved
Resumo:
A flow system designed with solenoid valves is proposed for determination of weak acid dissociable cyanide, based on the reaction with o-phthalaldehyde (OPA) and glycine yielding a highly fluorescent isoindole derivative. The proposed procedure minimizes the main drawbacks related to the reference batch procedure, based on reaction with barbituric acid and pyridine followed by spectrophotometric detection, i.e., use of toxic reagents, high reagent consumption and waste generation, low sampling rate, and poor sensitivity. Retention of the sample zone was exploited to increase the conversion rate of the analyte with minimized sample dispersion. Linear response (r=0.999) was observed for cyanide concentrations in the range 1-200 mu g L(-1), with a detection limit (99.7% confidence level) of 0.5 mu g L(-1)(19 nmol L(-1)). The sampling rate and coefficient of variation (n=10) were estimated as 22 measurements per hour and 1.4%, respectively. The results of determination of weak acid dissociable cyanide in natural water samples were in agreement with those achieved by the batch reference procedure at the 95% confidence level. Additionally to the improvement in the analytical features in comparison with those of the flow system with continuous reagent addition (sensitivity and sampling rate 90 and 83% higher, respectively), the consumption of OPA was 230-fold lower.
Resumo:
This study aimed at evaluating the thermal performance of a modular ceiling system for poultry houses. The reduced- and distorted-scale prototypes used ceiling modules made of reforested wood and were covered with recycled long-life package tiles. The following parameters were measured for 21 days: tile internal surface temperature (ST), globe temperature and humidity index (WBGT), and radiant heat load (RHL). Measurements were made at times of highest heat load (11:00 am, 13:00 pm, and 03:00 pm). Collected data were analyzed by "R" statistics software. Means were compared by multiple comparison test (Tukey) and linear regression was performed, both at 5% significance level. The results showed that the prototype with the ceiling was more efficient to reduce internal tile surface temperature; however, this was not sufficient to provide a comfortable environment for broilers during the growout. Therefore, other techniques to provide proper cooling are required in addition to the ceiling.
Resumo:
The development of modern analytical tools plays an important role in quality control. The main purpose of this study was to explore the use of subcritical water as a versatile analytical tool, employed simultaneously as a reagent and solvent, as well as the application of high temperature-high resolution gas chromatography (HT-HRGC) to develop a procedure for the analysis of triacylglycerides and fatty acids in Azadirachta indica A. Juss. (Neem) oil without the need for solvents, chemical reagents, or catalytic agents. The developed method presented satisfactory results and is in agreement with the concepts of Green Analytical Chemistry (GAC).
Resumo:
This work describes the construction and testing of a simple pressurized solvent extraction (PSE) system. A mixture of acetone:water (80:20), 80 ºC and 103.5 bar, was used to extract two herbicides (Diuron and Bromacil) from a sample of polluted soil, followed by identification and quantification by high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The system was also used to extract soybean oil (70 ºC and 69 bar) using pentane. The extracted oil was weighed and characterized through the fatty acid methyl ester analysis (myristic (< 0.3%), palmitic (16.3%), stearic (2.8%), oleic (24.5%), linoleic (46.3%), linolenic (9.6%), araquidic (0.3%), gadoleic (< 0.3%), and behenic (0.3%) acids) using high-resolution gas chromatography with flame ionization detection (HRGC-FID). PSE results were compared with those obtained using classical procedures: Soxhlet extraction for the soybean oil and solid-liquid extraction followed by solid-phase extraction (SLE-SPE) for the herbicides. The results showed: 21.25 ± 0.36% (m/m) of oil in the soybeans using the PSE system and 21.55 ± 0.65% (m/m) using the soxhlet extraction system; extraction efficiency (recovery) of herbicides Diuron and Bromacil of 88.7 ± 4.5% and 106.6 ± 8.1%, respectively, using the PSE system, and 96.8 ± 1.0% and 94.2 ± 3.9%, respectively, with the SLP-SPE system; limit of detection (LOD) and limit of quantification (LOQ) for Diuron of 0.012 mg kg-1 and 0.040 mg kg-1, respectively; LOD and LOQ for Bromacil of 0.025 mg kg-1 and 0.083 mg kg-1, respectively. The linearity used ranged from 0.04 to 1.50 mg L-1 for Diuron and from 0.08 to 1.50 mg L-1 for Bromacil. In conclusion, using the PSE system, due to high pressure and temperature, it is possible to make efficient, fast extractions with reduced solvent consumption in an inert atmosphere, which prevents sample and analyte decomposition.
Resumo:
In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene) (PHBPE) film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.
Resumo:
Gas-phase SiCl3+ ions undergo sequential solvolysis type reactions with water, methanol, ammonia, methylamine and propylene. Studies carried out in a Fourier Transform mass spectrometer reveal that these reactions are facile at 10-8 Torr and give rise to substituted chlorosilyl cations. Ab initio and DFT calculations reveal that these reactions proceed by addition of the silyl cation to the oxygen or nitrogen lone pair followed by a 1,3-H migration in the transition state. These transition states are calculated to lie below the energy of the reactants. By comparison, hydrolysis of gaseous CCl3+ is calculated to involve a substantial positive energy barrier.
Resumo:
Introduction. This protocol aims at measuring the storage life potential of banana fruit, and at determining the physiological age of fruit. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. This part describes the required laboratory materials and the five steps necessary for calculating the banana green life duration, which corresponds to the number of days between the fruit harvest and climacteric crisis. Results. The measurement of O-2 and CO2 concentrations allows one to detect the climacteric peak which marks the end of the banana green life.