50 resultados para glycerol kinase

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy with a worse prognosis than other cardiomyopathies. CCC occurs in 30 % of individuals infected with Trypanosoma cruzi, endemic in Latin America. Heart failure is associated with impaired energy metabolism, which may be correlated to contractile dysfunction. We thus analyzed the myocardial gene and protein expression, as well as activity, of key mitochondrial enzymes related to ATP production, in myocardial samples of end-stage CCC, idiopathic dilated (IDC) and ischemic (IC) cardiomyopathies. Methodology/Principal Findings: Myocardium homogenates from CCC (N = 5), IC (N = 5) and IDC (N = 5) patients, as well as from heart donors (N = 5) were analyzed for protein and mRNA expression of mitochondrial creatine kinase (CKMit) and muscular creatine kinase (CKM) and ATP synthase subunits aplha and beta by immunoblotting and by real-time RT-PCR. Total myocardial CK activity was also assessed. Protein levels of CKM and CK activity were reduced in all three cardiomyopathy groups. However, total CK activity, as well as ATP synthase alpha chain protein levels, were significantly lower in CCC samples than IC and IDC samples. CCC myocardium displayed selective reduction of protein levels and activity of enzymes crucial for maintaining cytoplasmic ATP levels. Conclusions/Significance: The selective impairment of the CK system may be associated to the loss of inotropic reserve observed in CCC. Reduction of ATP synthase alpha levels is consistent with a decrease in myocardial ATP generation through oxidative phosphorylation. Together, these results suggest that the energetic deficit is more intense in the myocardium of CCC patients than in the other tested dilated cardiomyopathies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The apoptosis of retinal neurons plays a critical role in the pathogenesis of diabetic retinopathy (DR), but the molecular mechanisms underlying this phenomenon remain unclear. The purpose of this study was to investigate the cellular localization and the expression of microRNA-29b (miR-29b) and its potential target PKR associated protein X (RAX), an activator of the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway, in the retina of normal and diabetic rats. Methods: Retinas were obtained from normal and diabetic rats within 35 days after streptozotocin (STZ) injection. In silico analysis indicated that RAX is a potential target of miR-29b. The cellular localization of miR-29b and RAX was assessed by in situ hybridization and immunofluorescence, respectively. The expression levels of miR-29b and RAX mRNA were evaluated by quantitative reverse transcription PCR (qRT-PCR), and the expression of RAX protein was evaluated by western blot. A luciferase reporter assay and inhibition of endogenous RAX were performed to confirm whether RAX is a direct target of miR-29b as predicted by the in silico analysis. Results: We found that miR-29b and RAX are localized in the retinal ganglion cells (RGCs) and the cells of the inner nuclear layer (INL) of the retinas from normal and diabetic rats. Thus, the expression of miR-29b and RAX, as assessed in the retina by quantitative RT-PCR, reflects their expression in the RGCs and the cells of the INL. We also revealed that RAX protein is upregulated (more than twofold) at 3, 6, 16, and 22 days and downregulated (70%) at 35 days, whereas miR-29b is upregulated (more than threefold) at 28 and 35 days after STZ injection. We did not confirm the computational prediction that RAX is a direct target of miR-29b. Conclusions: Our results suggest that RAX expression may be indirectly regulated by miR-29b, and the upregulation of this miRNA at the early stage of STZ-induced diabetes may have a protective effect against the apoptosis of RGCs and cells of the INL by the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flagellated protozoan parasite Trypanosoma cruzi is the aetiological agent of Chagas disease. Nucleoside diphosphate kinases (NDPKs) are enzymes that are involved in energy management and nucleoside balance in the cell. T. cruzi TcNDPK1, a canonical isoform, was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. Crystals grew after 72 h in 0.2 M MgCl(2), 20% PEG 3350. Data were collected to 3.5 angstrom resolution using synchrotron X-ray radiation at the National Synchrotron Light Laboratory (Campinas, Brazil). The crystals belonged to the trigonal space group P3, with unit-cell parameters a = b = 127.84, c = 275.49 angstrom. Structure determination is under way and will provide relevant information that may lead to the first step in rational drug design for the treatment of Chagas disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flow system designed with solenoid micro-pumps is proposed for fast and greener spectrophotometric determination of free glycerol in biodiesel. Glycerol was extracted from samples without using organic solvents. The determination involves glycerol oxidation by periodate, yielding formaldehyde followed by formation of the colored (3,5-diacetil-1,4-dihidrolutidine) product upon reaction with acetylacetone. The coefficient of variation, sampling rate and detection limit were estimated as 1.5% (20.0 mg L(-1) glycerol, n =10), 34 h(-1), and 1.0 mg L(-1) (99.7% confidence level), respectively. A linear response was observed from 5 to 50 mg L(-1), with reagent consumption estimated as 345 mu g of KIO(4) and 15 mg of acetylacetone per determination. The procedure was successfully applied to the analysis of biodiesel samples and the results agreed with the batch reference method at the 95% confidence level. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new procedure for spectrofluorimetric determination of free and total glycerol in biodiesel samples is presented. It is based on the oxidation of glycerol by periodate, forming formaldehyde, which reacts with acetylacetone, producing the luminescent 3,5-diacetyl-1,4-dihydrolutidine. A flow system with solenoid micro-pumps is proposed for solution handling. Free glycerol was extracted off-line from biodiesel samples with water, and total glycerol was converted to free glycerol by saponification with sodium ethylate under sonication. For free glycerol, a linear response was observed from 5 to 70 mg L(-1) with a detection limit of 0.5 mg L(-1), which corresponds to 2 mg kg(-1) in biodiesel. The coefficient of variation was 0.9% (20 mg L(-1), n = 10). For total glycerol, samples were diluted on-line, and the linear response range was 25 to 300 mg L(-1). The detection limit was 1.4 mg L(-1) (2.8 mg kg(-1) in biodiesel) with a coefficient of variation of 1.4% (200 mg L(-1), n = 10). The sampling rate was ca. 35 samples h(-1) and the procedure was applied to determination of free and total glycerol in biodiesel samples from soybean, cottonseed, and castor beans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of glycerol on xylose-to-xylitol bioconversion by Candida guilliermondii was evaluated by its addition (0.7 and 6.5 g/l) to semidefined media (xylose as a substrate). The glycerol concentrations were chosen based on the amounts produced during previous studies on xylitol production by C. guilliermondii. Medium without glycerol addition (control) and medium containing glycerol (53 g/l) in substitution to xylose were also evaluated. According to the results, the addition of 0.7 g/l glycerol to the fermentation medium favored not only the yield (Y (P/S) = 0.78 g/g) but also the xylitol productivity (Q (P) = 1.13 g/l/h). During the xylose-to-xylitol bioconversion, the formation of byproducts (glycerol and ethanol) was observed for all conditions employed. In relation to the cellular growth, glycerol as the only carbon source for C. guilliermondii was better than xylose or xylose and glycerol mixtures, resulting in a maximum cellular concentration (5.34 g/l).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was the glycerolysis of babassu oil catalyzed by immobilized lipase from Burkholderia cepacia, in a continuous packed-bed reactor. The best reaction conditions were previously established in batchwise via response surface methodology as a function of glycerol-to-oil molar ratio and reaction temperature. The reactor operated continuously for 22 days at 50 A degrees C, and during the first 6 days, no significant decrease on the initial lipase activity was observed. Monoglycerides concentration was in the range from 25 to 33 wt.%. Subsequently, a progressive decrease in the activity was detected, and an inactivation profile described by Arrhenius model estimated values of 50 days and 1.37 x 10(-2) h(-1), for the half-life and deactivation coefficient, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of the addition of xanthan gum and glycerol to the starch of green pea with high content of AM (cv. Utrillo) in the preparation of films and their physical characteristics. Filmogenic solution (FS) with different levels of pea starch (3, 4, and 5%), xanthan gum (0, 0.05, and 0.1%), and glycerol (glycerol-starch ratio of 1: 5 w/w) were studied. The FS was obtained by boiling (5 min), followed by autoclaving for 1 h at 120 degrees C. The films were prepared by casting. Films prepared only with pea starch were mechanically resistant when compared to other films, prepared with corn, cassava, rice, and even other pea cultivars (yellow, commercial). The tensile strength of these films is comparable to synthetic films prepared with high-density polyethylene and linear low-density polyethylene. However, they are films of low elasticity when compared to other films, such as rice starch films, and especially when compared to polyethylene films. The increased concentration of starch in the solution increased the puncture force. The increased concentration of glycerol slightly decreased the film crystallinity and interfered in the mechanical properties of the films, causing reduction of the maximum values of tensile strength, strain at break, and puncture force. The plasticizer also caused an increase of elongation at break. Xanthan gum was important to formation of films; however, it did not affect their mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clavulanic acid (CA) is a potent inhibitor of beta-lactamases, produced by some resistant pathogenic microorganisms, which allows efficient treatment of infectious diseases. The kinetic and thermodynamic parameters of CA production by a new isolate of Streptomyces DAUFPE 3060 and its degradation were evaluated. The effect of temperature on the system was investigated in the range 24-40 degrees C adopting an overall model accounting for (a) the Arrhenius-type formation of CA by fermentation, (b) the hypothetical reversible unfolding of the enzyme limiting the overall metabolism, and (c) the irreversible first-order degradation of CA. The higher rates of CA formation (k(CA) = 0,107 h(-1)) and degradation (k(d) = 0.062 h(-1)) were observed at 32 and 40 degrees C, respectively. The main thermodynamic parameters of the three above hypothesized events were estimated. In particular, the activation parameters of degradation (activation energy = 39.0 kJ/mol; Delta H(d)* = 36.5 kJ/mol; Delta S(d)* = -219.7 J/(mol K); Delta G(d)* = 103.5 kJ/mol) compare reasonably well with those reported in the literature for similar system without taking into account the other two events. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of PLC and Pkc inhibitors on Aspergillus nidulans depend on the carbon source. PLC inhibitors Spm and C48/80 delayed the first nuclear division in cultures growing on glucose, but stimulated it in media supplemented with pectin. Less intense were these effects on the mutant transformed with PLC-A gene rupture (AP27). Neomycin also delayed the germination in cultures growing on glucose or pectin; however, on glucose, the nuclear division was inhibited whereas in pectin it was stimulated. These effects were minor in AP27. The effects of Ro-31-8425 and BIM (both Pkc inhibitors) were also opposite for cultures growing on glucose or pectin. On glucose cultures of both strains BIM delayed germination and the first nuclear division, whereas on pectin both parameters were stimulated. Opposite effects were also detected when the cultures were growing on glucose or pectin in the presence of Ro-31-8425.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The viridins like demethoxyviridin (Dmv) and wortmannin (Wm) are nanomolar inhibitors of the PI3 kinases, a family of enzymes that play key roles in a host of regulatory processes. Central to the use of these compounds to investigate the role of PI3 kinase in biological systems, or as scaffolds for drug development, are the interrelated issues of stability, chemical reactivity, and bioactivity as inhibitors of PI3 kinase. We found that Dmv was an even more potent inhibitor of PI3 kinase than Wm. However, Dmv was notably less stable than Wm in PBS, with a half-life of 26 min versus Wm`s half-life of 3470 min. Dmv, like Wm, disappeared in culture media with a half-life of less than 1 min. To overcome Dmv`s instability, it was esterified at the C1 position, and then reacted with glycine at the C20 position. The resulting Dmv derivative, termed SA-DmvC20-Gly had a half-life of 218 min in PBS and 64 min in culture media. SA-DmvC20-Gly underwent an exchange reaction at the C20 position with N-acetyl lysine in a manner similar to a WmC20 derivative, WmC20-Proline. SA-DmvC20-Gly inhibited PI3 kinase with an IC(50) of 44 nM, compared to Wm`s IC(50) of 12 nM. These results indicate that the stability of Dmv can be manipulated by reactions at the C1 and C20 positions, while substantially maintaining its ability to inhibit PI3 kinase. Our results indicate it may be possible to obtain stabilized Dmv derivatives for use as PI3 kinase inhibitors in biological systems. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleoside diphosphate kinases play a crucial role in the purine-salvage pathway of trypanosomatid protozoa and have been found in the secretome of Leishmania sp., suggesting a function related to host-cell integrity for the benefit of the parasite. Due to their importance for housekeeping functions in the parasite and by prolonging the life of host cells in infection, they become an attractive target for drug discovery and design. In this work, we describe the first structural characterization of nucleoside diphosphate kinases b from trypanosomatid parasites (tNDKbs) providing insights into their oligomerization, stability and structural determinants for nucleotide binding. Crystallographic studies of LmNDKb when complexed with phosphate, AMP and ADP showed that the crucial hydrogen-bonding residues involved in the nucleotide interaction are fully conserved in tNDKbs. Depending on the nature of the ligand, the nucleotide-binding pocket undergoes conformational changes, which leads to different cavity volumes. SAXS experiments showed that tNDKbs, like other eukaryotic NDKs, form a hexamer in solution and their oligomeric state does not rely on the presence of nucleotides or mimetics. Fluorescence-based thermal-shift assays demonstrated slightly higher stability of tNDKbs compared to human NDKb (HsNDKb), which is in agreement with the fact that tNDKbs are secreted and subjected to variations of temperature in the host cells during infection and disease development. Moreover, tNDKbs were stabilized upon nucleotide binding, whereas HsNDKb was not influenced. Contrasts on the surface electrostatic potential around the nucleotide-binding pocket might be a determinant for nucleotide affinity and protein stability differentiation. All these together demonstrated the molecular adaptation of parasite NDKbs in order to exert their biological functions intra-parasite and when secreted by regulating ATP levels of host cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stromal cells from pediatric myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) associated with MDS(MDS-AML) present high expression of leukemia inhibitor factor (LIF). We demonstrated using mitogen-activated protein kinase ( MAPK) inhibitors that in stromal cells from pediatric MDS and MDS-AML, p38MAPK was critical in serum-induced secretion of LIF. The serum induction of phosphorylated p38MAPK form was observed only in stromal cells from healthy children, whereas in MDS and MDS-AML basal levels were maintained suggesting constitutive p38MAPK activation. Our study suggested the possible importance in pediatric MDS of p38MAPK signaling pathway which may be a future therapeutic target. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The persistent nature of addiction has been associated with activity-induced plasticity of neurons within the striatum and nucleus accumbens (NAc). To identify the molecular processes leading to these adaptations, we performed Cre/loxP-mediated genetic ablations of two key regulators of gene expression in response to activity, the Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) and its postulated main target, the cAMP-responsive element binding protein (CREB). We found that acute cocaine-induced gene expression in the striatum was largely unaffected by the loss of CaMKIV. On the behavioral level, mice lacking CaMKIV in dopaminoceptive neurons displayed increased sensitivity to cocaine as evidenced by augmented expression of locomotor sensitization and enhanced conditioned place preference and reinstatement after extinction. However, the loss of CREB in the forebrain had no effect on either of these behaviors, even though it robustly blunted acute cocaine-induced transcription. To test the relevance of these observations for addiction in humans, we performed an association study of CAMK4 and CREB promoter polymorphisms with cocaine addiction in a large sample of addicts. We found that a single nucleotide polymorphism in the CAMK4 promoter was significantly associated with cocaine addiction, whereas variations in the CREB promoter regions did not correlate with drug abuse. These findings reveal a critical role for CaMKIV in the development and persistence of cocaine-induced behaviors, through mechanisms dissociated from acute effects on gene expression and CREB-dependent transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neo-intima development and atherosclerosis limit long-term vein graft use for revascularization of ischaemic tissues. Using a rat model, which is technically less challenging than smaller rodents, we provide evidence that the temporal morphological, cellular, and key molecular events during vein arterialization resemble the human vein graft adaptation. Right jugular vein was surgically connected to carotid artery and observed up to 90 days. Morphometry demonstrated gradual thickening of the medial layer and important formation of neo-intima with deposition of smooth muscle cells (SMC) in the subendothelial layer from day 7 onwards. Transmission electron microscopy showed that SMCs switch from the contractile to synthetic phenotype on day 3 and new elastic lamellae formation occurs from day 7 onwards. Apoptosis markedly increased on day 1, while alpha-actin immunostaining for SMC almost disappeared by day 3. On day 7, cell proliferation reached the highest level and cellular density gradually increased until day 90. The relative magnitude of cellular changes was higher in the intima vs. the media layer (100 vs. 2 times respectively). Cyclin-dependent kinase inhibitors (CDKIs) p27(Kip1) and p16(INKA) remained unchanged, whereas p21(Cip1) was gradually downregulated, reaching the lowest levels by day 7 until day 90. Taken together, these data indicate for the first time that p21(Cip1) is the main CDKI protein modulated during the arterialization process the rat model of vein arterialization that may be useful to identify and validate new targets and interventions to improve the long-term patency of vein grafts.