111 resultados para geological carbon sequestration

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of crop management practices after conversion of Amazon Cerrado into cropland influences soil C stocks and has direct and indirect consequences on greenhouse gases (GHG) emissions. The aim of this study was to quantify soil C sequestration, through the evaluation of the changes in C stocks, as well as the GHG fluxes (N(2)O and CH(4)) during the process of conversion of Cerrado into agricultural land in the southwestern Amazon region, comparing no-tillage (NT) and conventional tillage (CT) systems. We collected samples from soils and made gas flux measurements in July 2004 (the dry season) and in January 2005 (the wet season) at six areas: Cerrado, CT cultivated with rice for 1 year (1CT) and 2 years (2CT), and NT cultivated with soybean for 1 year (1NT), 2 years (2NT) and 3 years (3NT), in each case after a 2-year period of rice under CT. Soil samples were analyzed in both seasons for total organic C and bulk density. The soil C stocks, corrected for a mass of soil equivalent to the 0-30-cm layer under Cerrado, indicated that soils under NT had generally higher C storage compared to native Cerrado and CT soils. The annual C accumulation rate in the conversion of rice under CT into soybean under NT was 0.38 Mg ha(-1) year(-1). Although CO(2) emissions were not used in the C sequestration estimates to avoid double counting, we did include the fluxes of this gas in our discussion. In the wet season, CO(2) emissions were twice as high as in the dry season and the highest N(2)O emissions occurred under the NT system. There were no CH(4) emissions to the atmosphere (negative fluxes) and there were no significant seasonal variations. When N(2)O and CH(4) emissions in C-equivalent were subtracted (assuming that the measurements made on 4 days were representative of the whole year), the soil C sequestration rate of the conversion of rice under CT into soybean under NT was 0.23 Mg ha(-1) year(-1). Although there were positive soil C sequestration rates, our results do not present data regarding the full C balance in soil management changes in the Amazon Cerrado. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grassland management affects soil organic carbon (SOC) content and a variety of management options have been proposed to sequester carbon. However, studies conducted in Brazilian pastures have shown divergent responses for the SOC depending on management practices. Our objective was to evaluate the effects of management on SOC stocks in grasslands of the Brazilian states of Rondonia and Mato Grosso, and to derive region-specific factors for soil C stock change associated with different management conditions. Compared to SOC stocks in native vegetation, degraded grassland management decreased SOC by a factor of 0.91 +/- 0.14, nominal grassland management reduced SOC stock for Oxisols by a relatively small factor of 0.99 +/- 0.08, whereas, SOC storage increased by a factor of 1.24 +/- 0.07 with nominal management for other soil types. Improved grassland management on Oxisols increased SOC storage by 1.19 +/- 0.07, relative to native stocks, but there were insufficient data to evaluate the impact of improved grassland management for other soil types. Using these results, we also evaluated the potential for grassland management to sequester or emit C to the atmosphere, and found that degraded grassland management decreased stocks by about 0.27-0.28 Mg C ha(-1) yr(-1); nominal management on Oxisols decreased C at a rate of 0.03 Mg C ha(-1) yr(-1), while nominal management on others soil types and improved management on Oxisols increased stocks by 0.72 Mg C ha(-1) yr(-1) and 0.61 Mg C ha(-1) yr(-1), respectively. Therefore, when well managed or improved, grasslands in Rondonia and Mato Grosso states have the potential to sequester C. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approval of the Clean Development Mechanism, provided for in the Kyoto Protocol, enables countries with afforested land to trade in carbon emissions reduction certificates related to carbon dioxide equivalent quantities (CO(2-e)) stored within a certain forest area. Potential CO(2-e) above base line sequestration was determined for two forest sites on commercial eucalyptus plantations in northern Brazil (Bahia). Compensation values for silvicultural regimes involving rotation lengths greater than economically optimal were computed using the Faustmann formula. Mean values obtained were US$8.16 (MgCO(2-e))(-1) and US $7.19 (MgCO(2-e))(-1) for average and high site indexes, respectively. Results show that carbon supply is more cost-efficient in highly productive sites. Annuities of US$18.8 Mg C(-1) and US$35.1 Mg C(-1) and yearly payments of US$4.4 m(-3) and US$8.2 m(-3) due for each marginal cubic meter produced were computed for high and average sites, respectively. The estimated value of the tonne of carbon defines minimum values to be paid to forest owners, in order to induce a change in silvicultural management regimes. A reduction of carbon supply could be expected as a result of an increase in wood prices, although it would not respond in a regular manner. For both sites, price elasticity of supply was found to be inelastic and increased as rotation length moved further away from economically optimal: 0.24 and 0.27 for age 11 years in average- and high-productivity sites, respectively. This would be due to biomass production potential as a limiting factor; beyond a certain threshold value. an increase in price does not sustain a proportional change in carbon storage supply. The environmental service valuation model proposed might be adequate for assessing potential supply in plantation forestry, from a private landowner perspective, with an economic opportunity cost. The model is not applicable to low commercial value forest plantations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Cerrado and Amazon regions of Brazil are probably the largest agricultural frontier of the world, and Could be a sink or source for C depending on the net effect of land use change and subsequent management on soil organic C pools. We evaluated the effects of agricultural management systems on soil organic C (SOC) stocks in the Brazilian states of Rondonia and Mato Grosso, and derived regional specific factors for soil C stock change associated with different management systems. We used 50 observations (data points) in this study, including 42 dealing with annual cropping practices and 8 dealing with perennial cropping, and analyzed the data in linear mixed-effect models. No tillage (NT) systems in Cerrado areas increased SOC Storage by 1.08 +/- 0.06 relative to SOC stocks under native conditions, while SOC storage increased by a modest factor of 1.01 +/- 0.17 in Cerradao and Amazon Forest conditions. Full tillage (FT) had negative effect on SOC storage relative to NT, decreasing SOC stocks by a factor of 0.94 +/- 0.04. but did not significantly reduce SOC stocks relative to native levels when adopted in the Cerrado region. Perennial cropping had a minimal impact on SOC stocks, estimated at a factor Value of 0.98 +/- 0.14, suggesting these systems maintain about 98% of the SOC stock found under native vegetation. The results Suggest that NT adoption may be increasing SOC with land use change from native vegetation to cropland management in the Cerrado region of Brazil. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis x urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (TBCA), bole growth, and net ecosystem production (NEP). Replicate plots within a single plantation were established at the midpoint of the rotation (end of year 3), with treatments of no additional fertilization or irrigation, heavy fertilization (to remove any nutrient limitation), irrigation (to remove any water limitation), and irrigation plus fertilization. Rainfall was unusually high in the first year (1769mm) of the experiment, and control plots had high rates of GPP (6.64 kg C m(-2) year(-1)), TBCA (2.14 kg C m(-2) year(-1)), and bole growth (1.81 kg C m(-2) year). Irrigation increased each of these rates by 15-17%. The second year of the experiment had average rainfall (1210 mm), and lower rainfall decreased production in control plots by 46% (GPP), 52% (TBCA), and 40% (bole growth). Fertilization treatments had neglible effects. The response to irrigation was much greater in the drier year, with irrigated plots exceeding the production in control plots by 83% (GPP), 239% (TBCA), and 24% (bole growth). Even though the rate of irrigation ensured no water limitation to tree growth, the high rainfall year showed higher production in irrigated plots for both GPP (38% greater than in drier year) and bole growth (23% greater). Varying humidity and supplies of water led to a range in NEP of 0.8-2.7 kg C m(-2) year. This difference between control and irrigated treatments, combined with differences between drier and wetter years, indicated a strong response of these Eucalyptus trees to both water supply and atmospheric humidity during the dry season. The efficiency of converting light energy into fixed carbon ranged from a low of 0.027 mol C to a high of 0.060 mol C per mol of absorbed photosynthetically active radiation (APAR), and the efficiency of bolewood production ranged from 0.78 to 1.98 g wood per MJ of APAR. Irrigation increased the efficiency of wood production per unit of water used from 2.55 kg wood m(-3) in the rainfed plot to 3.51 kg m(-3) in irrigated plots. Detailed information on the response of C budgets to environmental conditions and resource supplies will be necessary for accurate predictions of plantation yields across years and landscapes. (V) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

introduction of conservation practices in degraded agricultural land will generally recuperate soil quality, especially by increasing soil organic matter. This aspect of soil organic C (SOC) dynamics under distinct cropping and management systems can be conveniently analyzed with ecosystem models such as the Century Model. In this study, Century was used to simulate SOC stocks in farm fields of the Ibiruba region of north central Rio Grande do Sul state in Southern Brazil. The region, where soils are predominantly Oxisols, was originally covered with subtropical woodlands and grasslands. SOC dynamics was simulated with a general scenario developed with historical data on soil management and cropping systems beginning with the onset of agriculture in 1900. From 1993 to 2050, two contrasting scenarios based on no-tillage soil management were established: the status quo scenario, with crops and agricultural inputs as currently practiced in the region and the high biomass scenario with increased frequency of corn in the cropping system, resulting in about 80% higher biomass addition to soils. Century simulations were in close agreement with SOC stocks measured in 2005 in the Oxisols with finer texture surface horizon originally under woodlands. However, simulations in the Oxisols with loamy surface horizon under woodlands and in the grassland soils were not as accurate. SOC stock decreased from 44% to 50% in fields originally under woodland and from 20% to 27% in fields under grasslands with the introduction of intensive annual grain crops with intensive tillage and harrowing operations. The adoption of conservation practices in the 1980s led to a stabilization of SOC stocks followed by a partial recovery of native stocks. Simulations to 2050 indicate that maintaining status quo would allow SOC stocks to recover from 81% to 86% of the native stocks under woodland and from 80% to 91 % of the native stocks under grasslands. Adoption of a high biomass scenario would result in stocks from 75% to 95% of the original stocks under woodlands and from 89% to 102% in the grasslands by 2050. These simulations outcomes underline the importance of cropping system yielding higher biomass to further increase SOC content in these Oxisols. This application of the Century Model could reproduce general trends of SOC loss and recovery in the Oxisols of the Ibiruba region. Additional calibration and validation should be conducted before extensive usage of Century as a support tool for soil carbon sequestration projects in this and other regions can be recommended. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conforme previsões do último relatório do IPCC (Intergovernmental Panel of Climatic Change) em 2007, até meados deste século haverá um aumento na concentração de CO2 na atmosfera podendo chegar a 720 μmol mol-1. Consequentemente haverá uma elevação da temperatura de até +3 °C, o que ocorrerá em conjunto com mudanças no padrão de precipitação. O mesmo relatório sugere que isto poderá acarretar uma substituição gradual da floresta tropical por vegetação similar a uma savana na parte oriental da Amazônia, porém nada é conclusivo. Diante dessas possibilidades, pergunta-se - Como as espécies de árvores que compõem as regiões de alagamento da Amazônia irão responder às alterações climáticas por vir? Apesar dessas previsões serem pessimistas, o alagamento ainda ocorrerá por vários anos na Amazônia e é de grande importância compreender os efeitos do alagamento sobre as respostas fisiológicas das plantas num contexto das mudanças climáticas. Os principais efeitos sobre a sinalização metabólica e hormonal durante o alagamento são revisados e os possíveis efeitos que as mudanças climáticas poderão ter sobre as plantas amazônicas são discutidos. As informações existentes sugerem que sob alagamento, as plantas tendem a mobilizar reservas para suprir a demanda de carbono necessário para a manutenção do metabolismo sob o estresse da falta de oxigênio. Até certo limite, com o aumento da concentração de CO2, as plantas tendem a fazer mais fotossíntese e a produzir mais biomassa, que poderão aumentar ainda mais com um acréscimo de temperatura de até 3 °C. Alternativamente, com o alagamento, há uma diminuição geral do potencial de crescimento e é possível que quando em condições de CO2 e temperatura elevados os efeitos positivo e negativo se somem. Com isso, as respostas fisiológicas poderão ser amenizadas ou, ainda, promover maior crescimento para a maioria das espécies de regiões alagáveis até o meio do século. Porém, quando a temperatura e o CO2 atingirem valores acima dos ótimos para a maioria das plantas, estas possivelmente diminuirão a atividade fisiológica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO(2)) from fossil fuels, methane (CH(4)) and nitrous oxide (N(2)O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg C(eq)), and in the unburned system (559 out of 748 kg C(eq)). Although nitrogen fertilizer emissions are large, 111 kg C(eq) ha-1 yr-1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg C(eq) ha-1 yr-1). and BC (1536 kg C(eq) ha-1 yr-1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha-1 yr-1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A global biofuels program will lead to intense pressures on land supply and can increase greenhouse gas emissions from land-use changes. Using linked economic and terrestrial biogeochemistry models, we examined direct and indirect effects of possible land-use changes from an expanded global cellulosic bioenergy program on greenhouse gas emissions over the 21st century. Our model predicts that indirect land use will be responsible for substantially more carbon loss ( up to twice as much) than direct land use; however, because of predicted increases in fertilizer use, nitrous oxide emissions will be more important than carbon losses themselves in terms of warming potential. A global greenhouse gas emissions policy that protects forests and encourages best practices for nitrogen fertilizer use can dramatically reduce emissions associated with biofuels production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical ecosystems play a large and complex role in the global carbon cycle. Clearing of natural ecosystems for agriculture leads to large pulses of CO(2) to the atmosphere from terrestrial biomass. Concurrently, the remaining intact ecosystems, especially tropical forests, may be sequestering a large amount of carbon from the atmosphere in response to global environmental changes including climate changes and an increase in atmospheric CO(2). Here we use an approach that integrates census-based historical land use reconstructions, remote-sensing-based contemporary land use change analyses, and simulation modeling of terrestrial biogeochemistry to estimate the net carbon balance over the period 1901-2006 for the state of Mato Grosso, Brazil, which is one of the most rapidly changing agricultural frontiers in the world. By the end of this period, we estimate that of the state`s 925 225 km(2), 221 092 km(2) have been converted to pastures and 89 533 km(2) have been converted to croplands, with forest-to-pasture conversions being the dominant land use trajectory but with recent transitions to croplands increasing rapidly in the last decade. These conversions have led to a cumulative release of 4.8 Pg C to the atmosphere, with similar to 80% from forest clearing and 20% from the clearing of cerrado. Over the same period, we estimate that the residual undisturbed ecosystems accumulated 0.3 Pg C in response to CO2 fertilization. Therefore, the net emissions of carbon from Mato Grosso over this period were 4.5 Pg C. Net carbon emissions from Mato Grosso since 2000 averaged 146 Tg C/yr, on the order of Brazil`s fossil fuel emissions during this period. These emissions were associated with the expansion of croplands to grow soybeans. While alternative management regimes in croplands, including tillage, fertilization, and cropping patterns promote carbon storage in ecosystems, they remain a small portion of the net carbon balance for the region. This detailed accounting of a region`s carbon balance is the type of foundation analysis needed by the new United Nations Collaborative Programmme for Reducing Emissions from Deforestation and Forest Degradation (REDD).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

No-tillage mulch-based (NTM) cropping systems have been widely adopted by farmers in the Brazilian savanna region (Cerrado biome). We hypothesized that this new type of management should have a profound impact on soil organic carbon (SOC) at regional scale and consequently on climate change mitigation. The objective of this study was thus to quantify the SOC storage potential of NTM in the oxisols of the Cerrado using a synchronic approach that is based on a chronosequence of fields of different years under NTM. The study consisted of three phases: (1) a farm/cropping system survey to identify the main types of NTM systems to be chosen for the chronosequence; (2) a field survey to identify a homogeneous set of situations for the chronosequence and (3) the characterization of the chronosequence to assess the SOC storage potential. The main NTM system practiced by farmers is an annual succession of soybean (Glycine max)or maize (Zea mays) with another cereal crop. This cropping system covers 54% of the total cultivated area in the region. At the regional level, soil organic C concentrations from NTM fields were closely correlated with clay + silt content of the soil (r(2) = 0.64). No significant correlation was observed (r(2) = 0.07), however, between these two variables when we only considered the fields with a clay + silt content in the 500-700 g kg(-1) range. The final chronosequence of NTM fields was therefore based on a subsample of eight fields, within this textural range. The SOC stocks in the 0-30 cm topsoil layer of these selected fields varied between 4.2 and 6.7 kg C m(-2) and increased on average (r(2) = 0.97) with 0.19 kg C m(-2) year(-1). After 12 years of NTM management, SOC stocks were no longer significantly different from the stocks under natural Cerrado vegetation (p < 0.05), whereas a 23-year-old conventionally tilled and cropped field showed SOC stocks that were about 30% below this level. Confirming our hypotheses, this study clearly illustrated the high potential of NTM systems in increasing SOC storage under tropical conditions, and how a synchronic approach may be used to assess efficiently such modification on farmers` fields, identifying and excluding non desirable sources of heterogeneity (management, soils and climate). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Total soil carbon and chemical attributes under different land uses in the Brazilian savanna. The Brazilian savanna region (Cerrado) is one of the largest cultivated areas of the world. The different land uses in the region can effectively change the quantities of soil organic matter and the cycling of nutrients. I-lie objective of this study was to evaluate the effect of different land use management systems on the relationship between soil organic carbon and the soil chemical attributes of a Red Latosol (Oxisol) under Cerrado in Rio Verde (Goias state). The treatments studied were native vegetation (cerrado), low-productivity pasture, conventional tillage with soybean, and no-tillage with soybean and maize. The smallest values for pH, available P, K, Ca and Mg were observed for the Cerradao treatment, even if the relatively high C levels increased the potential soil cation exchange capacity. The pasture, conventional tillage and no-tillage treatments showed higher K, Ca, Mg, available 13, and S concentrations in the soil. In the areas where soil tillage did not take place and lime and fertilizers were applied superficially, the stratification of the soil organic carbon provides the retention of the elements near to the surface, with significance correlations with the soil chemicals attributes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robust and accurate regional estimates of C storage in soils are currently an important research topic because of ongoing debate about human-induced changes in the terrestrial C cycle. Widely available geoprocessing tools were applied to estimate native soil organic C (SOC) stocks of Rio Grande do Sul state in southern Brazil to a depth of 30 cm from previously sampled soil pedons under undisturbed vegetation. The study used a statewide comprehensive soil survey comprising a small-scale soil map, a climate map, and a soil pedon database. Soil organic C stocks under native vegetation were calculated with two different approaches: the Tier 1 method of the Intergovernmental Panel on Climate Change (IPCC) and a refined method based on actual field measurements derived from soil profile data. Highest SOC stocks occurred in Neossolos Quartzarenico hidromorfico (Aquents), Organossolos Tiomorficos (Hemists), Latossolos Brunos (Udox), and Vertissolos Ebanicos (Uderts) soil classes. Before human use of soils, most C was stored in the Latossolos Vermelhos (Udox) and Neossolos Regoliticos (Orthents), which occupy a large area of Rio Grande do Sul. Generally, IPCC default reference SOC stocks compared well with SOC stocks calculated from soil pedons. The total SOC stock of Rio Grande do Sul was estimated at 1510.3 Tg C (5.8 kg C m(-2)) by the IPPC method and 1597.5 +/- 363.9 Tg C (7.4 +/- 1.9 kg C m(-2)) calculated from soil pedons. The SOC digital map and SOC database developed in this study provide crucial background information for state-level contemporary assessment of C stocks and soil C sequestration programs and initiatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determinations of the volatile elements carbon, hydrogen, sulfur and nitrogen in many geological RM, performed with the LECO CHN and SC analysers, are presented. The method allowed the determination of S in concentrations from a few % m/m to 0.001% m/m or less, of C from % m/m to 0.01% m/m and of H from % m/m to 0.004% m/m. Accuracy was usually better than the XRF method (for S). All obtained values passed the Sutarno-Steger test, which establishes that vertical bar(mean(analysed) - mean(certified))vertical bar/ S(certified) < 2, for the cases with an appropriate number of determinations (n > 10 for each element). It was possible to perform routine determination of C, H and S with the instrumentation, coupled with the determination of major and minor elements in geological materials. Determination of nitrogen could also be performed on an exploratory basis, with improvements in the method dependent on the future availability of more reference materials with reliable composition of this element.