41 resultados para generalized multiscale entropy

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accretion of a phantom fluid with non-zero chemical potential by black holes is discussed with basis on the generalized second law of thermodynamics. For phantom fluids with positive temperature and negative chemical potential we demonstrate that the accretion process is possible, and that the condition guaranteeing the positiveness of the phantom fluid entropy coincides with the one required by the generalized second law. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on previous observational studies on cold extreme events over southern South America, some recent studies suggest a possible relationship between Rossby wave propagation remotely triggered and the occurrence of frost. Using the concept of linear theory of Rossby wave propagation, this paper analyzes the propagation of such waves in two different basic states that correspond to austral winters with maximum and minimum generalized frost frequency of occurrence in the Wet Pampa (central-northwest Argentina). In order to determine the wave trajectories, the ray tracing technique is used in this study. Some theoretical discussion about this technique is also presented. The analysis of the basic state, from a theoretical point of view and based on the calculation of ray tracings, corroborates that remotely excited Rossby waves is the mechanism that favors the maximum occurrence of generalized frosts. The basic state in which the waves propagate is what conditions the places where they are excited. The Rossby waves are excited in determined places of the atmosphere, propagating towards South America along the jet streams that act as wave guides, favoring the generation of generalized frosts. In summary, this paper presents an overview of the ray tracing technique and how it can be used to investigate an important synoptic event, such as frost in a specific region, and its relationship with the propagation of large scale planetary waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence of jet precession in many galactic and extragalactic sources has been reported in the literature. Much of this evidence is based on studies of the kinematics of the jet knots, which depends on the correct identification of the components to determine their respective proper motions and position angles on the plane of the sky. Identification problems related to fitting procedures, as well as observations poorly sampled in time, may influence the follow-up of the components in time, which consequently might contribute to a misinterpretation of the data. In order to deal with these limitations, we introduce a very powerful statistical tool to analyse jet precession: the cross-entropy method for continuous multi-extremal optimization. Only based on the raw data of the jet components (right ascension and declination offsets from the core), the cross-entropy method searches for the precession model parameters that better represent the data. In this work we present a large number of tests to validate this technique, using synthetic precessing jets built from a given set of precession parameters. With the aim of recovering these parameters, we applied the cross-entropy method to our precession model, varying exhaustively the quantities associated with the method. Our results have shown that even in the most challenging tests, the cross-entropy method was able to find the correct parameters within a 1 per cent level. Even for a non-precessing jet, our optimization method could point out successfully the lack of precession.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new technique for obtaining model fittings to very long baseline interferometric images of astrophysical jets. The method minimizes a performance function proportional to the sum of the squared difference between the model and observed images. The model image is constructed by summing N(s) elliptical Gaussian sources characterized by six parameters: two-dimensional peak position, peak intensity, eccentricity, amplitude, and orientation angle of the major axis. We present results for the fitting of two main benchmark jets: the first constructed from three individual Gaussian sources, the second formed by five Gaussian sources. Both jets were analyzed by our cross-entropy technique in finite and infinite signal-to-noise regimes, the background noise chosen to mimic that found in interferometric radio maps. Those images were constructed to simulate most of the conditions encountered in interferometric images of active galactic nuclei. We show that the cross-entropy technique is capable of recovering the parameters of the sources with a similar accuracy to that obtained from the very traditional Astronomical Image Processing System Package task IMFIT when the image is relatively simple (e. g., few components). For more complex interferometric maps, our method displays superior performance in recovering the parameters of the jet components. Our methodology is also able to show quantitatively the number of individual components present in an image. An additional application of the cross-entropy technique to a real image of a BL Lac object is shown and discussed. Our results indicate that our cross-entropy model-fitting technique must be used in situations involving the analysis of complex emission regions having more than three sources, even though it is substantially slower than current model-fitting tasks (at least 10,000 times slower for a single processor, depending on the number of sources to be optimized). As in the case of any model fitting performed in the image plane, caution is required in analyzing images constructed from a poorly sampled (u, v) plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermodynamic properties of dark energy fluids described by an equation of state parameter omega = p/rho are rediscussed in the context of FRW type geometries. Contrarily to previous claims, it is argued here that the phantom regime omega < -1 is not physically possible since that both the temperature and the entropy of every physical fluids must be always positive definite. This means that one cannot appeal to negative temperature in order to save the phantom dark energy hypothesis as has been recently done in the literature. Such a result remains true as long as the chemical potential is zero. However, if the phantom fluid is endowed with a non-null chemical potential, the phantom field hypothesis becomes thermodynamically consistent, that is, there are macroscopic equilibrium states with T > 0 and S > 0 in the course of the Universe expansion. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-linear methods for estimating variability in time-series are currently of widespread use. Among such methods are approximate entropy (ApEn) and sample approximate entropy (SampEn). The applicability of ApEn and SampEn in analyzing data is evident and their use is increasing. However, consistency is a point of concern in these tools, i.e., the classification of the temporal organization of a data set might indicate a relative less ordered series in relation to another when the opposite is true. As highlighted by their proponents themselves, ApEn and SampEn might present incorrect results due to this lack of consistency. In this study, we present a method which gains consistency by using ApEn repeatedly in a wide range of combinations of window lengths and matching error tolerance. The tool is called volumetric approximate entropy, vApEn. We analyze nine artificially generated prototypical time-series with different degrees of temporal order (combinations of sine waves, logistic maps with different control parameter values, random noises). While ApEn/SampEn clearly fail to consistently identify the temporal order of the sequences, vApEn correctly do. In order to validate the tool we performed shuffled and surrogate data analysis. Statistical analysis confirmed the consistency of the method. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/aim: The purpose of this study was to determine the bacterial diversity in the subgingival plaque of subjects with generalized aggressive periodontitis by using culture-independent molecular methods based on 16S ribosomal DNA cloning. Methods: Samples from 10 subjects with generalized aggressive periodontitis were selected. DNA was extracted and the 16S rRNA gene was amplified with the universal primer pairs 9F and 1525R. Amplified genes were cloned, sequenced, and identified by comparison with known 16S rRNA sequences. Results: One hundred and ten species were identified from 10 subjects and 1007 clones were sequenced. Of these, 70 species were most prevalent. Fifty-seven percent of the clone (40 taxa) sequences represented phylotypes for which no cultivated isolates have been reported. Several species of Selenomonas and Streptococcus were found at high prevalence and proportion in all subjects. Overall, 50% of the clone libraries were formed by these two genera. Selenomonas sputigena, the species most commonly detected, was found in nine of 10 subjects. Other species of Selenomonas were often present at high levels, including S. noxia, Selenomonas sp. EW084, Selenomonas sp. EW076, Selenomonas FT050, Selenomonas sp. P2PA_80, and Selenomonas sp. strain GAA14. The classical putative periodontal pathogens, such as, Aggregatibacter actinomycetemcomitans, was below the limit of detection and was not detected. Conclusion: These data suggest that other species, notably species of Selenomonas, may be associated with disease in generalized aggressive periodontitis subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a family of well-known external clustering validity indexes to measure the degree of compatibility or similarity between two hard partitions of a given data set, including partitions with different numbers of categories. A unified, fully equivalent set-theoretic formulation for an important class of such indexes was derived and extended to the fuzzy domain in a previous work by the author [Campello, R.J.G.B., 2007. A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment. Pattern Recognition Lett., 28, 833-841]. However, the proposed fuzzy set-theoretic formulation is not valid as a general approach for comparing two fuzzy partitions of data. Instead, it is an approach for comparing a fuzzy partition against a hard referential partition of the data into mutually disjoint categories. In this paper, generalized external indexes for comparing two data partitions with overlapping categories are introduced. These indexes can be used as general measures for comparing two partitions of the same data set into overlapping categories. An important issue that is seldom touched in the literature is also addressed in the paper, namely, how to compare two partitions of different subsamples of data. A number of pedagogical examples and three simulation experiments are presented and analyzed in details. A review of recent related work compiled from the literature is also provided. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79-88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix `Kw`) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an application to real data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we introduce a new hierarchical surface decomposition method for multiscale analysis of surface meshes. In contrast to other multiresolution methods, our approach relies on spectral properties of the surface to build a binary hierarchical decomposition. Namely, we utilize the first nontrivial eigenfunction of the Laplace-Beltrami operator to recursively decompose the surface. For this reason we coin our surface decomposition the Fiedler tree. Using the Fiedler tree ensures a number of attractive properties, including: mesh-independent decomposition, well-formed and nearly equi-areal surface patches, and noise robustness. We show how the evenly distributed patches can be exploited for generating multiresolution high quality uniform meshes. Additionally, our decomposition permits a natural means for carrying out wavelet methods, resulting in an intuitive method for producing feature-sensitive meshes at multiple scales. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estimation of data transformation is very useful to yield response variables satisfying closely a normal linear model, Generalized linear models enable the fitting of models to a wide range of data types. These models are based on exponential dispersion models. We propose a new class of transformed generalized linear models to extend the Box and Cox models and the generalized linear models. We use the generalized linear model framework to fit these models and discuss maximum likelihood estimation and inference. We give a simple formula to estimate the parameter that index the transformation of the response variable for a subclass of models. We also give a simple formula to estimate the rth moment of the original dependent variable. We explore the possibility of using these models to time series data to extend the generalized autoregressive moving average models discussed by Benjamin er al. [Generalized autoregressive moving average models. J. Amer. Statist. Assoc. 98, 214-223]. The usefulness of these models is illustrated in a Simulation study and in applications to three real data sets. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the generalized log-gamma regression model is modified to allow the possibility that long-term survivors may be present in the data. This modification leads to a generalized log-gamma regression model with a cure rate, encompassing, as special cases, the log-exponential, log-Weibull and log-normal regression models with a cure rate typically used to model such data. The models attempt to simultaneously estimate the effects of explanatory variables on the timing acceleration/deceleration of a given event and the surviving fraction, that is, the proportion of the population for which the event never occurs. The normal curvatures of local influence are derived under some usual perturbation schemes and two martingale-type residuals are proposed to assess departures from the generalized log-gamma error assumption as well as to detect outlying observations. Finally, a data set from the medical area is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce in this paper a new class of discrete generalized nonlinear models to extend the binomial, Poisson and negative binomial models to cope with count data. This class of models includes some important models such as log-nonlinear models, logit, probit and negative binomial nonlinear models, generalized Poisson and generalized negative binomial regression models, among other models, which enables the fitting of a wide range of models to count data. We derive an iterative process for fitting these models by maximum likelihood and discuss inference on the parameters. The usefulness of the new class of models is illustrated with an application to a real data set. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an automatic method to detect and classify weathered aggregates by assessing changes of colors and textures. The method allows the extraction of aggregate features from images and the automatic classification of them based on surface characteristics. The concept of entropy is used to extract features from digital images. An analysis of the use of this concept is presented and two classification approaches, based on neural networks architectures, are proposed. The classification performance of the proposed approaches is compared to the results obtained by other algorithms (commonly considered for classification purposes). The obtained results confirm that the presented method strongly supports the detection of weathered aggregates.