10 resultados para gene disruption cyanobacterial mutant

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonsyndromic autosomal recessive deafness accounts for 80% of hereditary deafness. To date, 52 loci responsible for autosomal recessive deafness have been mapped and 24 genes identified. Here, we report a large inbred Brazilian pedigree with 26 subjects affected by prelingual deafness. Given the extensive consanguinity found in this pedigree, the most probable pattern of inheritance is autosomal recessive. However, our linkage and mutational analysis revealed, instead of an expected homozygous mutation in a single gene, two different mutant alleles and a possible third undetected mutant allele in the MYO15A gene (DFNB3 locus), as well as evidence for other causes for deafness in the same pedigree. Among the 26 affected subjects, 15 were homozygous for the novel c.10573delA mutation in the MYO15A gene, 5 were compound heterozygous for the mutation c.10573delA and the novel deletion c.9957_9960delTGAC and one inherited only a single c.10573delA mutant allele, while the other one could not be identified. Given the extensive consanguinity of the pedigree, there might be at least one more deafness locus segregating to explain the condition in some of the subjects whose deafness is not clearly associated with MYO15A mutations, although overlooked environmental causes could not be ruled out. Our findings illustrate a high level of etiological heterogeneity for deafness in the family and highlight some of the pitfalls of genetic analysis of large genes in extended pedigrees, when homozygosity for a single mutant allele is expected.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variations in myocardial biology. We, therefore, generated a cardiomyocyte-specific circadian clock mutant (CCM) mouse to test this hypothesis. At 12 wk of age, CCM mice exhibit normal myocardial contractile function in vivo, as assessed by echocardiography. Radiotelemetry studies reveal attenuation of heart rate diurnal variations and bradycardia in CCM mice (in the absence of conduction system abnormalities). Reduced heart rate persisted in CCM hearts perfused ex vivo in the working mode, highlighting the intrinsic nature of this phenotype. Wild-type, but not CCM, hearts exhibited a marked diurnal variation in responsiveness to an elevation in workload (80 mmHg plus 1 mu M epinephrine) ex vivo, with a greater increase in cardiac power and efficiency during the dark (active) phase vs. the light (inactive) phase. Moreover, myocardial oxygen consumption and fatty acid oxidation rates were increased, whereas cardiac efficiency was decreased, in CCM hearts. These observations were associated with no alterations in mitochondrial content or structure and modest mitochondrial dysfunction in CCM hearts. Gene expression microarray analysis identified 548 and 176 genes in atria and ventricles, respectively, whose normal diurnal expression patterns were altered in CCM mice. These studies suggest that the cardiomyocyte circadian clock influences myocardial contractile function, metabolism, and gene expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Relaxing action of sodium nitroprusside (SNP) was significantly reduced in the stomach fundus of mice lacking the kinin B(1) receptor (B(1)(-/-)). Increased basal cGMP accumulation was correlated with attenuated SNP induced dose-dependent relaxation in B(1)(-/-) when compared with wild type (WT) control mice. These responses to SNP were completely blocked by the guanylate cyclase inhibitor ODQ(10 mu M). It was also found that Ca(2+)-dependent, constitutive nitric oxide synthase (cNOS) activity was unchanged but the Ca(2+)-independent inducible NOS (iNOS) activity was greater in B(1)(-/-) mice than in WT animals. Zaprinast (100 mu M), a specific phosphodiesterase inhibitor, increased the nitrergic relaxations and the accumulation of the basal as well as the SNP-stimulated cGMP in WT but not in B(1)(-/-) stomach fundus. From these findings it is concluded that the inhibited phosphodiesterase activity and high level of cGMP reduced the resting muscle tone, impairing the relaxant responses of the stomach in B(1)(-/-) mice. In addition, it can be suggested that functional B(2) receptor might be involved in the NO compensatory mechanism associated with the deficiency of kinin B(1) receptor in the gastric tissue of the transgenic mice. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new piggyBac-related transposable element (TE) was found in the genome of a mutant Anticarsia gemmatalis multiple nucleopolyhedrovirus interrupting an inhibitor of apoptosis gene. This mutant virus induces apoptosis upon infection of an Anticarsia gemmatalis cell line, but not in a Trichoplusia ni cell line. The sequence of the new TE (which was named IDT for iap disruptor transposon) has 2531 bp with two DNA sequences flanking a putative Transposase (Tpase) ORF of 1719 bp coding for a protein with 572 amino acids. These structural features are similar to the piggyBac TE, also reported for the first time in the genome of a baculovirus. We have also isolated variants of this new TE from different lepidopteran insect cells and compared their Tpase sequences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rough mutants of Brucella abortus were generated by disruption of wbkC gene which encodes the formyltransferase enzyme involved in LPS biosynthesis. In bone marrow-derived macrophages the B. abortus Delta wbkC mutants were attenuated, could not reach a replicative niche and induced higher levels of IL-12 and TNF-alpha when compared to parental smooth strains. Additionally, mutants exhibited attenuation in vivo in C57BL/6 and interferon regulatory factor-1 knockout mice. Delta wbkC mutant strains induced lower protective immunity in C56BL/6 than smooth vaccine S19 but similar to rough vaccine RB51. Finally, we demonstrated that Brucella wbkC is critical for LPS biosynthesis and full bacterial virulence. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Chronic, intermittent exposure to psychostimulant drugs results in striatal neuroadaptations leading to an increase in an array of behavioral responses on subsequent challenge days. A brain-specific striatal-enriched tyrosine phosphatase (STEP) regulates synaptic strengthening by dephosphorylating and inactivating several key synaptic proteins. This study tests the hypothesis that a substrate-trapping form of STEP will prevent the development of amphetamine-induced stereotypies. Methods: A substrate-trapping STEP protein, TAT-STEP (C-S), was infused into the ventrolateral striatum on each of 5 consecutive exposure days and I hour before amphetamine injection. Animals were challenged to see whether sensitization to the stereotypy-producing effects of amphetamine developed. The same TAT-STEP (C-S) protein was used on acute striatal slices to determine the impact on long-term potentiation and depression. Results: Infusion of TAT-STEP (C-S) blocks the increase of amphetamine-induced stereotypies when given during the 5-day period of sensitization. The TAT-STEP (C-S) has no effect if only infused on the challenge day. Treatment of acute striatal slices with TAT-STEP (C-S) blocks the induction of long-term potentiation and potentates long-term depression. Conclusions: A substrate trapping form of STEP blocks the induction of amphetamine-induced neuroplasticity within the ventrolateral striatum and supports the hypothesis that STEP functions as a tonic break on synaptic strengthening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A different organization for the xyl operon was found in different genomes of Burkholderia and Pseudomomas species. Degenerated primers were designed based on Burkholderia genomes and used to amplify the xylose isomerase gene (xylA) from Burkholderia sacchari IPT101 The gene encoded a protein of 329 amino acids, which showed the highest similarity (90%) to the homologous gene of Burkholderia dolosa. It was cloned in the broad host range plasmid pBBR1MCS-2, which partially restored growth and polyhydroxybutyrate production capability in xylose to a B. sacchari xyl(-) mutant. When xylA was overexpressed in the wild-type strain, it was not able to increase growth and polyhydroxybutyrate production, suggesting that XylA activity is not limiting for xylose utilization in B. sacchari.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The p53 protein is a key regulator of cell responses to DNA damage, and it has been shown that It sensitizes glioma cells to the alkylating agent temozolomide by up-regulating the extrinsic apoptotic pathway, whereas it increases the resistance to chloroethylating agents, such as ACNU and BCNU, probably by enhancing the efficiency of DNA repair. However, because these agents induce a wide variety of distinct DNA lesions, the direct Importance of DNA repair is hard to access. Here, it is shown that the Induction of photoproducts by UV light (UV-C) significantly Induces apoptosis In a p53-mutated glioma background. This Is caused by a reduced level of photoproduct repair, resulting In the persistence of DNA lesions in p53-mutated glioma cells. UV-C-Induced apoptosis in p53 mutant glioma cells Is preceded by strong transcription and replication inhibition due to blockage by unrepaired photolesions. Moreover, the results Indicate that UV-C-induced apoptosis of p53 mutant glioma cells Is executed through the intrinsic apoptotic pathway, with Bcl-2 degradation and sustained Bax and Bak up-regulation. Collectively, the data Indicate that unrepaired DNA lesions Induce apoptosis In p53 mutant gliomas despite the resistance of these gliomas to temozolomide, suggesting that efficiency of treatment of p53 mutant gliomas might be higher with agents that Induce the formation of DNA lesions whose global genomic repair is dependent on p53. (Mol Cancer Res 2009;7(2):237-46)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Caulobacter crescentus rho:Tn5 mutant strain presenting a partially functional transcription termination factor Rho is highly sensitive to hydrogen peroxide in both exponential and stationary phases. The mutant was shown to be permanently under oxidative stress, based on fluorophore oxidation, and also to be sensitive to tert-butyl hydroperoxide and paraquat. However, the results showed that the activities of superoxide dismutases CuZnSOD and FeSOD and the alkylhydroperoxide reductase ahpC mRNA levels in the rho mutant were comparable to the wild-type control in the exponential and stationary phases. In contrast, the KatG catalase activity of the rho mutant strain was drastically decreased and did not show the expected increase in the stationary phase compared with the exponential phase. Transcription of the katG gene was increased in the rho mutant and the levels of the immunoreactive KatG protein do not differ considerably compared with the wild type in the stationary phase, suggesting that KatG activity is affected in a translational or a post-translational step.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deficiency of complement C5 is rare and frequently associated with severe and recurrent infections, especially caused by Neisseria spp. We observed the absence of component C5 in the serum of 3 siblings from a Brazilian family with history of consanguinity. The patients had suffered from recurrent episodes of meningitis and other less severe infections. Sera from these patients were unable to mediate hemolytic activity either by the classical or alternative pathways and presented extremely low levels of C5 protein (13, 0.9 and 1.0 mu g/ml-normal range: 45-190 mu g/ml). Hemolytic activity could be restored by the addition of purified C5 to deficient serum. Sequencing of sibling C5 cDNA revealed a homozygous 153 bp deletion that corresponds precisely to exon 30. The parents carried the same deletion but only in one allele. Sequencing of the corresponding region in the genomic DNA revealed a C to C substitution within intron 30 and, most significantly, the substitution of GAG(4028) for GAA(4028) at the 3` end of exon 30 which is most likely responsible for skipping of exon 30. The resulting in-frame deletion in the C5 mRNA codes for a mutant C5 protein lacking residues 1289-1339. These residues map to the CUB and C5d domains of the C5 alpha chain. This deletion is expected to produce a non-functional and unstable C5 protein which is more susceptible to degradation. (C) 2009 Published by Elsevier Ltd.