20 resultados para fruit fly
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Two mariner-like elements, Ramar1 and Ramar2, are described in the genome of Rhynchosciara americana, whose nucleotide consensus sequences were derived from multiple defective copies containing deletions, frame shifts and stop codons. Ramar1 contains several conserved amino acid blocks which were identified, including a specific D,D(34)D signature motif. Ramar2 is a defective mariner-like element, which contains a deletion overlapping in most of the internal region of the transposase ORF while its extremities remain intact. Predicted transposase sequences demonstrated that Ramar1 and Ramar2 phylogenetically present high identity to mariner-like elements of mauritiana subfamily. Southern blot analysis indicated that Ramar1 is widely represented in the genome of Rhynchosciara americana. In situ hybridizations showed Ramar1 localized in several chromosome regions, mainly in pericentromeric heterochromatin and their boundaries, while Ramar2 appeared as a single band in chromosome A.
Resumo:
A new piggyBac-related transposable element (TE) was found in the genome of a mutant Anticarsia gemmatalis multiple nucleopolyhedrovirus interrupting an inhibitor of apoptosis gene. This mutant virus induces apoptosis upon infection of an Anticarsia gemmatalis cell line, but not in a Trichoplusia ni cell line. The sequence of the new TE (which was named IDT for iap disruptor transposon) has 2531 bp with two DNA sequences flanking a putative Transposase (Tpase) ORF of 1719 bp coding for a protein with 572 amino acids. These structural features are similar to the piggyBac TE, also reported for the first time in the genome of a baculovirus. We have also isolated variants of this new TE from different lepidopteran insect cells and compared their Tpase sequences.
Resumo:
Protein-protein interaction networks were investigated in terms of outward accessibility, which quantifies the effectiveness of each protein in accessing other proteins and is related to the internality of nodes. By comparing the accessibility between 144 ortholog proteins in yeast and the fruit fly, we found that the accessibility tends to be higher among proteins in the fly than in yeast. In addition, z-scores of the accessibility calculated for different species revealed that the protein networks of less evolved species tend to be more random than those of more evolved species. The accessibility was also used to identify the border of the yeast protein interaction network, which was found to be mainly composed of viable proteins.
Resumo:
Background and aims: Evidence suggests that fructose and sweetened beverages may be a risk factor for obesity and type 2 diabetes, but the role of sweetened fruit juices in glucose disturbances has been minimally explored. The aim of this study was to examine the association of total fructose, fresh fruit and sweetened fruit juice intake with glucose tolerance homeostasis in Japanese-Brazilians. Methods and results: A total of 475 men and 579 women aged >= 30 years were evaluated in a cross-sectional population-based survey with a standardized protocol including a 2-h oral glucose tolerance test (WHO criteria). Habitual food consumption was obtained using a validated food frequency questionnaire for Japanese-Brazitians. After adjustments for potential confounding variables, the odds ratio (OR; 95%Cl) for impaired glucose tolerance was 2.1 (1.0-4.5; P for trend = 0.05) for the highest as compared to the lowest tertile intake of total fructose and 2.3 (1.1-5.1; P for trend = 0.05) for the highest as compared to the lowest tertile intake of sweetened fruit juices. Conclusion: Our results showed that high intakes of dietary fructose and sweetened fruit juices, but not whole fresh fruits, were associated with impaired glucose tolerance among genetically susceptible individuals. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Supercritical carbon dioxide (SC-CO(2)) extractions of Brazilian cherry (Eugenia uniflora L.) were carried out under varied conditions of pressure and temperature, according to a central composite 2(2) experimental design, in order to produce flavour-rich extracts. The composition of the extracts was evaluated by gas chromatography coupled with mass spectrometry (GC/MS). The abundance of the extracted compounds was then related to sensory analysis results, assisted by principal component and factorial discriminant analysis (PCA and FDA, respectively). The identified sesquiterpenes and ketones were found to strongly contribute to the characteristic flavour of the Brazilian cherry. The extracts also contained a variety of other volatile compounds, and part of the fruit wax contained long-chain hydrocarbons that according to multivariate analysis, contributed to the yield of the extracts, but not the flavour. Volatile phenolic compounds, to which antioxidant properties are attributed, were also present in the extracts in high proportion, regardless of the extraction conditions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Yellow passion fruit pulp is unstable, presenting phase separation that can be avoided by the addition of hydrocolloids. For this purpose, xanthan and guar gum [0.3, 0.7 and 1.0% (w/w)] were added to yellow passion fruit pulp and the changes in the dynamic and steady-shear rheological behavior evaluated. Xanthan dispersions showed a more pronounced pseudoplasticity and the presence of yield stress, which was not observed in the guar gum dispersions. Cross model fitting to flow curves showed that the xanthan suspensions also had higher zero shear viscosity than the guar suspensions, and, for both gums, an increase in temperature led to lower values for this parameter. The gums showed different behavior as a function of temperature in the range of 5-35 degrees C. The activation energy of the apparent viscosity was dependent on the shear rate and gum concentration for guar, whereas for xanthan these values only varied with the concentration. The mechanical spectra were well described by the generalized Maxwell model and the xanthan dispersions showed a more elastic character than the guar dispersions, with higher values for the relaxation time. Xanthan was characterized as a weak gel, while guar presented a concentrated solution behavior. The simultaneous evaluation of temperature and concentration showed a stronger influence of the polysaccharide concentration on the apparent viscosity and the G` and G `` moduli than the variation in temperature.
Resumo:
Since the advent of the postgenomic era, efforts have focused on the development of rapid strategies for annotating plant genes of unknown function. Given its simplicity and rapidity, virus-induced gene silencing (VIGS) has become one of the preeminent approaches for functional analyses. However, several problems remain intrinsic to the use of such a strategy in the study of both metabolic and developmental processes. The most prominent of these is the commonly observed phenomenon of ""sectoring"" the tissue regions that are not effectively targeted by VIGS. To better discriminate these sectors, an effective marker system displaying minimal secondary effects is a prerequisite. Utilizing a VIGS system based on the tobacco rattle virus vector, we here studied the effect of silencing the endogenous phytoene desaturase gene (pds) and the expression and subsequent silencing of the exogenous green fluorescence protein (gfp) on the metabolism of Arabidopsis (Arabidopsis thaliana) leaves and tomato (Solanum lycopersicum) fruits. In leaves, we observed dramatic effects on primary carbon and pigment metabolism associated with the photobleached phenotype following the silencing of the endogenous pds gene. However, relatively few pleiotropic effects on carbon metabolism were observed in tomato fruits when pds expression was inhibited. VIGS coupled to gfp constitutive expression revealed no significant metabolic alterations after triggering of silencing in Arabidopsis leaves and a mild effect in mature green tomato fruits. By contrast, a wider impact on metabolism was observed in ripe fruits. Silencing experiments with an endogenous target gene of interest clearly demonstrated the feasibility of cosilencing in this system; however, carefully constructed control experiments are a prerequisite to prevent erroneous interpretation.
Resumo:
Levels of ethylene and polyamines (PAs) were measured during organogenesis of hypocotyl explants of two species of passion fruit (Passiflora cincinnata Masters and Passiflora edulis Sims f. flavicarpa Degener `FB-100`) to better understand the relationships of these regulators and their influence on cell differentiation and morphogenesis. Moreover, histological investigation of shoot ontogenesis was conducted to characterize the different events involved in cell redifferentiation and regulation of PA and ethylene levels. A delay was observed in morphogenic responses of P. edulis f. flavicarpa as compared to P. cincinnata, and these changes coincided with production of elevated levels of polyamine and ethylene levels. During differentiation, cells showed high rates of expansion and elongation, and high ethylene levels were associated with high PA levels, suggesting that the two biosynthesis pathways were highly regulated. Moreover, their interaction might be an important factor for determining cell differentiation. The addition of PAs to the culture medium did not promote organogenesis; however, the incorporation of the PA inhibitor methylglyoxal bisguanylhydrazone in the culture medium reduced shoot bud differentiation, suggesting the need to maintaining a minimum level of PAs for morphogenic events to take place.
Resumo:
The objective of the present work was to induce somatic embryogenesis from zygotic embryos of Passiflora cincinnata Masters. Zygotic embryos formed calli on media with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.5 mu M benzyladenine (BA) after 30 days of in vitro culture. A concentration of 18.1 mu M 2,4-D resulted in the largest number of somatic embryos. Embryogenic calli were yellowish and friable, forming whitish proembryogenic masses. Morphologically, embryogenic cells were small and had large nuclei and dense cytoplasm, whereas non-embryogenic cells were elongated, with small nuclei and less dense cytoplasm. Calli cultured under white light on basal Murashige and Skoog`s medium with activated charcoal produced embryos in all developmental stages. There were differences among the treatments, with some leading to the production of calli with embryos and some only to callus formation. Some abnormalities were associated with somatic embryos, including fused axes, fused cotyledons and polycotyledonary embryos. Production of secondary somatic embryos occurred in the first cycle of primary embryo development. Secondary embryos differentiated from the surface of the protodermal layer of primary embryos with intense cell proliferation, successive mitotic divisions in the initial phase of embryoid development, and a vascular system formed with no connection to the parental tissue. This secondary embryogenic system of P. cincinnata is characterized by intense proliferation and maintenance of embryogenic competence after successive subcultures. This reproducible protocol opens new prospects for massive propagation and is an alternative to the current organogenesis-based transformation protocol.
Resumo:
In networks of plant-animal mutualisms, different animal groups interact preferentially with different plants, thus forming distinct modules responsible for different parts of the service. However, what we currently know about seed dispersal networks is based only on birds. Therefore, we wished to fill this gap by studying bat-fruit networks and testing how they differ from bird-fruit networks. As dietary overlap of Neotropical bats and birds is low, they should form distinct mutualistic modules within local networks. Furthermore, since frugivory evolved only once among Neotropical bats, but several times independently among Neotropical birds, greater dietary overlap is expected among bats, and thus connectance and nestedness should be higher in bat-fruit networks. If bat-fruit networks have higher nestedness and connectance, they should be more robust to extinctions. We analyzed 1 mixed network of both bats and birds and 20 networks that consisted exclusively of either bats (11) or birds (9). As expected, the structure of the mixed network was both modular (M = 0.45) and nested (NODF = 0.31); one module contained only birds and two only bats. In 20 datasets with only one disperser group, bat-fruit networks (NODF = 0.53 +/- A 0.09, C = 0.30 +/- A 0.11) were more nested and had a higher connectance than bird-fruit networks (NODF = 0.42 +/- A 0.07, C = 0.22 +/- A 0.09). Unexpectedly, robustness to extinction of animal species was higher in bird-fruit networks (R = 0.60 +/- A 0.13) than in bat-fruit networks (R = 0.54 +/- A 0.09), and differences were explained mainly by species richness. These findings suggest that a modular structure also occurs in seed dispersal networks, similar to pollination networks. The higher nestedness and connectance observed in bat-fruit networks compared with bird-fruit networks may be explained by the monophyletic evolution of frugivory in Neotropical bats, among which the diets of specialists seem to have evolved from the pool of fruits consumed by generalists.
Resumo:
The Atlantic Forest deserves special attention due to its high level of species endemism and degree of threat. As in other tropical biomes, there is little information about the ecology of the organisms that occur there. The objectives of this study were to verify how fruit-feeding butterflies are distributed through time, and the relation with meteorological conditions. Species richness and Shannon index were partitioned additively at the monthly level, and beta diversity, used as a hierarchical measure of temporal species turnover, was calculated among months, trimesters, and semesters. Circular analysis was used to verify how butterflies are distributed along seasons and its relation with meteorological conditions. We sampled 6488 individuals of 73 species. Temporal diversity of butterflies was more grouped than expected by chance among the months of each trimester. Circular analyses revealed that diversity is concentrated in hot months (September-March), with the subfamily Brassolinae strongly concentrated in February-March. Average temperature was correlated with total abundance of butterflies, abundance of Biblidinae, Brassolinae and Morphinae, and richness of Satyrinae. The present results show that 3mo of sampling between September and March is enough to produce a nonbiased sample of the local assemblage of butterflies, containing at least 70 percent of the richness and 25 percent of abundance. The influence of temperature on sampling is probably related to butterfly physiology. Moreover, temperature affects resource availability for larvae and adults, which is higher in hot months. The difference in seasonality patterns among subfamilies is probably a consequence of different evolutionary pressures through time.
Resumo:
Endosymbiotic bacteria of the genus Wolbachia are widespread among arthropods and cause a variety of reproductive abnormalities, such as cytoplasmic incompatibility, thelytokous parthenogenesis, male-killing, and host feminization. In this study, we used three sets of Wolbachia-specific primers (16S rDNA, ftsZ, and wsp) in conjunction with the polymerase chain reaction (PCR), cloning and sequencing to study the infection of fruit flies (Anastrepha spp. and Ceratitis capitata) by Wolbachia. The flies were collected at several localities in Brazil and at Guayaquil, Ecuador. All of the fruit flies studied were infected with Wolbachia supergroup A, in agreement with the high prevalence of this group in South America. Phylogenetic analysis showed that the wsp gene was the most sensitive gene for studying the relationships among Wolbachia strains. The Wolbachia sequences detected in these fruit flies were similar to those such as wMel reported for other fruit flies. These results show that the infection of Anastrepha fruit flies by Wolbachia is much more widespread than previously thought.
Resumo:
To investigate the kdr (knockdown resistance) resistance-associated gene mutation and determine its frequency in pyrethroid-resistant horn fly (Haematobia irritans) populations, a total of 1,804 horn flies of 37 different populations from all Brazilian regions (North, Northeast, Central-West, Southeast, and South) were molecular screened through polymerase chain reaction (PCR). The kdr gene was not detected in 87.08% of the flies. However, the gene was amplified in 12.92% of the flies, of which 11.70% were resistant heterozygous and 1.22% were resistant homozygous. Deviation from Hardy-Weinberg equilibrium (HWE) was found only in 1 ranch with an excess of heterozygous. When populations were grouped by region, three metapopulations showed significant deviations of HWE (Central-West population, South population and Southeast population). This indicates that populations are isolated one from another and kdr occurrence seems to be an independent effect probably reflecting the insecticide strategy used by each ranch. Although resistance to pyrethroids is disseminated throughout Brazil, only 48% of resistant populations had kdr flies, and the frequency of kdr individuals in each of these resistant populations was quite low. But this study shows that, with the apparent exception of the Northeast region, the kdr mechanism associated with pyrethroid resistance occurs all over Brazil.
Resumo:
Sand fly populations of different ecological niches in the Amaraji endemic American Cutaneous Leishmaniasis (ACL) focus of the Pernambuco Atlantic Forest region of northeastern Brazil were monitored spatiotemporally. Lutzomyia whitmani was dominant in all niches but occurred in smaller numbers in forested locations. L. whitmani was significantly less seasonal than the other species, being present throughout the year while other species were more abundant between February and April. These results suggest that L. whitmani may potentially be the principal vector of ACL in the region, even though the sand fly fauna was diverse: 88% were L.whitmani and 12% belonged to 11 other species. Two other species, L. complexa (1.3%) and L. migonei (0.8%), considered to be ACL vectors in other regions, were also present. This detailed picture of the sand fly population`s abundance and spatiotemporal distribution provides a basis for future modeling studies of forecasting sand fly activity patterns and ACL occurence.
Resumo:
In this study, the isolation and characterization of chemical composition of C. langsdorffii (copaiba) fruit peel volatile oil from Alfenas - MG was carried out according to successive hydrodistillations, likewise the anti-inflammatory activity was evaluated by rat paw edema model. The chemical composition of the oil was determined by GC-MS analysis. The major components were (E)-caryophyllene, germacrene B, 1,5-epoxysalvial-4(14)-ene, caryophyllene oxide and isospathulenol. The inflammatory process was inhibited in 39 +/- 6 % (p<0.05, Tukey-Kramer) by one sample of essential oil. The C. langsdorffii fruit peel is a rich source of essential oil (3.8% w/w), and due to potential industrial interest of its components this ecotype presents feasible crop seeking productivity and it could constitutes in a good alternative to the sustainable use of this specie.