58 resultados para froth flotation recovery
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This paper reports an innovative development: concentrating gibbsite via reverse froth flotation in order to obtain a metallurgical-grade bauxite concentrate. Tailings from an industrial plant have undergone attrition scrubbing and desliming; the quartz silica contained in the tailings has undergone flotation. Starch was used as a depressant, and ether-amine as the cationic collector. Optimum pH is around 10.0. In pilot plant scale, a metallurgical-grade concentrate was obtained by assaying 42.3% available alumina with an alumina/insoluble silica mass ratio of 11.1. It contained the gibbsite and the iron and titanium bearing minerals. The concentrate was further upgraded by magnetic separation, leading to 54.0% available alumina, with an alumina/insoluble silica mass ratio of 12.6 at an overall available alumina recovery of 69.3% in the final concentrate (non-magnetic product). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The processes involved in coal preparation produce harmful effects for the environment, mainly by the quantity and nature Of wastes that are generated, These tailings generally called ""pyritic"", even though not presenting a high pyrite content, are an acid material harmful to the environment. These tailings are usually disposed of in tailings dams. The tailings, studied in this work come from a process involving dense-medium cyclones and spirals. They have an ash content of 56% and a calorific value of 5,800 BTU/Lb, the sulfur content is 1.2%. In terms of size, the material is considered as ultrafine, as 63% of it is less than 0,014 mm. The coal matter content of these tailings is easily recovered by froth flotation, as evidenced in this work. It possible to recover 74% of the coal matter and to obtain a product with 7.3% ash and calorific value of 14,225 BTU/lb in dry basis.
Resumo:
This article presents a kinetic evaluation of froth flotation of ultrafine coal contained in the tailings from a Colombian coal preparation plant. The plant utilizes a dense-medium cyclones and spirals circuit. The tailings contained material that was 63% finer than 14 mu m. Flotation tests were performed with and without coal ""promoters"" (diesel oil or kerosene) to evaluate the kinetics of flotation of coal. It was found that flotation rates were higher when no promoter was added. Different kinetic models were evaluated for the flotation of the coal from the tailings, and it was found that the best fitted model was the classical first-order model.
Resumo:
This paper compares the critical impeller speed results for 6 L Denver and Wemco bench-scale flotation cells with findings from a study by Van der Westhuizen and Deglon [Van der Westhuizen, A.P., Deglon, D.A., 2007. Evaluation of solids suspension in a pilot-scale mechanical flotation cell: the critical impeller speed. Minerals Engineering 20,233-240; Van der Westhuizen, A.P., Deglon, D.A., 2008. Solids suspension in a pilot scale mechanical flotation cell: a critical impeller speed correlation. Minerals Engineering 21, 621-629] conducted in a 125 L Batequip flotation cell. Understanding solids suspension has become increasingly important due to dramatic increases in flotation cell sizes. The critical impeller speed is commonly used to indicate the effectiveness of solids suspension. The minerals used in this study were apatite, quartz and hematite. The critical impeller speed was found to be strongly dependent on particle size, solids density and air flow rate, with solids concentration having a lesser influence. Liquid viscosity was found to have a negligible effect. The general Zwietering-type critical impeller speed correlation developed by Van der Westhuizen and Deglon [Van der Westhuizen, A.P., Deglon, D.A., 2008. Solids suspension in a pilot scale mechanical flotation cell: a critical impeller speed correlation. Minerals Engineering 21, 621-629] was found to be applicable to all three flotation machines. The exponents for particle size, solids concentration and liquid viscosity were equivalent for all three cells. The exponent for solids density was found to be less significant than that obtained by the previous authors, and to be consistent with values reported in the general literature for stirred tanks. Finally, a new dimensionless critical impeller speed correlation is proposed where the particle size is divided by the impeller diameter. This modified equation generally predicts the experimental measurements well, with most predictions within 10% of the experimental. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH(3)CH(2)OCS(2)(-) at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate. EtX(-), with 2.0 mol L(-1) HCl generating ethanol and carbon disulfide. CS(2). A gas diffusion cell assures that only the volatile compounds diffuse through a PTFE membrane towards an acceptor stream of deionized water, thus avoiding the interferences of non-volatile compounds and suspended particles. The CS(2) is selectively detected by UV absorbance at 206 nm (epsilon = 65,000 L mol(-1) cm(-1)). The measured absorbance is directly proportional to EtX(-) concentration present in the sample solutions. The Beer`s law is obeyed in a 1 x 10(-6) to 2 x 10(-4) mol L(-1) concentration range of ethyl xanthate in the pulp with an excellent correlation coefficient (r = 0.999) and a detection limit of 3.1 x 10(-7) mol L(-1), corresponding to 38 mu g L. At flow rates of 200 mu L min(-1) of the donor stream and 100 mu L min(-1) of the acceptor channel a sampling rate of 15 injections per hour could be achieved with RSD < 2.3% (n = 10, 300 mu L injections of 1 x 10(-5) mol L(-1) EtX(-)). Two practical applications demonstrate the versatility of the FIA method: (i) evaluation the free EtX(-) concentration during a laboratory study of the EtX(-) adsorption capacity on pulverized sulfide ore (pyrite) and (ii) monitoring of EtX(-) at different stages (from starting load to washing effluents) of a flotation pilot plant processing a Cu-Zn sulfide ore. (C) 2010 Elsevier By. All rights reserved.
Resumo:
The processes that govern the rate of particle recovery in a flotation cell include the following sub-processes: collision, attachment, and stability of the aggregate formed by particles and bubbles. Collision is controlled by bulk hydrodynamics inside the flotation cell, while attachment is largely dominated by variables that belong to the domain of surface chemistry (contact angle, induction time). As for the stability of the particle/bubble aggregate, its efficiency depends on both hydrodynamics plus surface chemistry variables of the system. The flotation recovery of coarse particles of apatite and glass spheres was measured by micro-flotation and batch flotation tests in which hydrodynamic parameters were evaluated, such as impeller rotational speed, diameter, and geometry, as well as particle size and density. Results revealed that a proper impeller rotational speed yielded turbulence levels, which enabled to keep particles fully suspended, this way optimizing the collision efficiency between particles and bubbles, without jeopardizing the stability of the particle-bubble aggregates.
Resumo:
Effective solids suspension is a necessary precondition for particle collection, and solids suspension is largely dependent on the hydrodynamics of the flotation cell. This study attempted to correlate the status of the suspension of apatite particles of different sizes in a Denver laboratory flotation cell versus the impeller rotational speed (N) adopted to operate the machine. The latter variable (N) influences the impeller capacity to lift the particles from the bottom of the tank and also to disperse them throughout the volume of the vessel. Such an impeller capacity can be characterized by the critical impeller speed for the accomplishment of solids off-bottom suspension (N(z)) and also by the velocity of the radial water flow discharged by the impeller (U) divided by the particle terminal settling velocity (U(s)). This way, the status of the suspension of apatite particles inside the flotation cell can be characterized by one of three categories: ""segregation"" (N/N(2) < 0.60 and U(s)/U > 0.08); ""suspension"" (0.60 <= N/N(2) < 1 and 0.06 < U(s)/U < 0.10); and ""dragging"" (N/N(2) >= 1 and U(s)/U <= 0.03). The range of impeller rotational speed (N), which was able to suspend the finest particles (D(p) = 90,mu m), was unable to suspend the coarsest particles (D(P) = 254 mu m). Conversely, the high value of N (N > 1,300 rpm), which is adequate to suspend the coarsest particles, may promote the entrainment of the finest particles to the froth layer.
Resumo:
This work presents and discusses the influence of the surface tension (gamma(LV)) of methanol/water mixtures on the flotation response of apatite versus gangue minerals conditioned with flotation reagents (75 g/t cornstarch and 100 g/t Berol 867) at pH 10.6. Berol 867 is a collector composed of sodium alkyl sarcosinate plus nonionic surfactant. The highest Schulz efficiency of separation (recovery of apatite minus recovery of gangue) was achieved at approximate to 51.0 mN/m. The critical surface tension of wettability (gamma(C)) of apatite was found to occur at 34.7 mN/m when determined by means of gamma flotation experiments, , and it was 33.9 mN/m when determined by Zisman`s approach.
Resumo:
Results obtained in a pilot-scale unit designed for COD removal and p-TBC (p-tert-butylcatechol) recovery from a butadiene washing stream (pH 14, 200,000 mg COD L-1, highly toxic) at a petrochemical industry are presented. By adding H3PO4, phase separation is achieved and p-TBC is successfully recovered (88 g L-1 of washing stream). Information (time for phase separation and organic phase characterization) was gathered for designing a future industrial unit. The estimated heat generation rate was 990 kJ min-1 and 15 min were enough to promote phase separation for a liquid column of approximately 1.15 m.
Resumo:
Three comparative assays were performed seeking to improve the sensitivity of the diagnosis of Bordetella bronchiseptica infection analyzing swine nasal swabs. An initial assay compared the recovery of B. bronchiseptica from swabs simultaneously inoculated with B. bronchiseptica and some interfering bacteria, immersed into three transport formulations (Amies with charcoal, trypticase soy broth and phosphate buffer according to Soerensen supplemented with 5% of bovine fetal serum) and submitted to different temperatures (10ºC and 27ºC) and periods of incubation (24, 72 and 120 hours). A subsequent assay compared three selective media (MacConkey agar, modified selective medium G20G and a ceftiofur medium) for their recovery capabilities from clinical specimens. One last assay compared the polymerase chain reaction to the three selective media. In the first assay, the recovery of B. bronchiseptica from transport systems was better at 27ºC and the three formulations had good performances at this temperature, but the collection of qualitative and quantitative analysis indicated the advantage of Amies medium for nasal swabs transportation. The second assay indicated that MacConkey agar and modified G20G had similar results and were superior to the ceftiofur medium. In the final assay, polymerase chain reaction presented superior capability of B. bronchiseptica detection to culture procedures.
Resumo:
Bovine rumen protein with two levels of residual lipids (1.9 per cent or 3.8 per cent) was subjected to thermoplastic extrusion under different temperatures and moisture contents. Protein solubility in different buffers, disulphide cross-linking and molecular weight distribution were determined on the extrudates. After extrusion, samples with 1.9 per cent residual lipids content had a higher concentration of protein insoluble by undetermined forces, irrespective of feed moisture and processing temperature used. Lipid content of 3.8 per cent in the feed material resulted in more protein participating in the extrudate network through non-covalent interactions (hydrophobic and electrostatic) and disulphide bonds. A small dependency of the extrusion process on moisture and temperature and a marked dependency on lipid content, especially phospholipid, was observed, Electrophoresis under non-reducing conditions showed that protein extrusion with low feed moisture promoted high molecular breakdown inside the barrel, probably due to intense shear force, and further protein aggregation at the die end
Resumo:
Background: Little is known with respect to the metabolic response and the requirements of infected newborns. Moreover, the nutritional needs and particularly the energy metabolism of newborns with sepsis are controversial matter. In this investigation we aimed to evaluate the rest energy expenditure (REE) of newborns with bacterial sepsis during the acute and the recovery phases. Methods: We studied nineteen neonates (27.3 +/- 17.2 days old) with bacterial sepsis during the acute phase and recovery of their illness. REE was determined by indirect calorimetry and VO(2) and VCO(2) measured by gas chromatography. Results: REE significantly increased from 49.4 +/- 13.1 kcal/kg/day during the acute to 68.3 +/- 10.9 kcal/kg/day during recovery phase of sepsis (P < 0.01). Similarly, VO(2) (7.4 +/- 1.9 vs 10 +/- 1.5 ml/kg/min) and VCO(2) (5.1 +/- 1.7 vs 7.4 +/- 1.5 ml/kg/min) were also increased during the course of the disease (P < 0.01). Conclusion: REE was increased during recovery compared to the sepsis phase. REE of septic newborns should be calculated on individualized basis, bearing in mind their metabolic capabilities.
Resumo:
The VISTA near infrared survey of the Magellanic System (VMC) will provide deep YJK(s) photometry reaching stars in the oldest turn-off point throughout the Magellanic Clouds (MCs). As part of the preparation for the survey, we aim to access the accuracy in the star formation history (SFH) that can be expected from VMC data, in particular for the Large Magellanic Cloud (LMC). To this aim, we first simulate VMC images containing not only the LMC stellar populations but also the foreground Milky Way (MW) stars and background galaxies. The simulations cover the whole range of density of LMC field stars. We then perform aperture photometry over these simulated images, access the expected levels of photometric errors and incompleteness, and apply the classical technique of SFH-recovery based on the reconstruction of colour-magnitude diagrams (CMD) via the minimisation of a chi-squared-like statistics. We verify that the foreground MW stars are accurately recovered by the minimisation algorithms, whereas the background galaxies can be largely eliminated from the CMD analysis due to their particular colours and morphologies. We then evaluate the expected errors in the recovered star formation rate as a function of stellar age, SFR(t), starting from models with a known age-metallicity relation (AMR). It turns out that, for a given sky area, the random errors for ages older than similar to 0.4 Gyr seem to be independent of the crowding. This can be explained by a counterbalancing effect between the loss of stars from a decrease in the completeness and the gain of stars from an increase in the stellar density. For a spatial resolution of similar to 0.1 deg(2), the random errors in SFR(t) will be below 20% for this wide range of ages. On the other hand, due to the lower stellar statistics for stars younger than similar to 0.4 Gyr, the outer LMC regions will require larger areas to achieve the same level of accuracy in the SFR( t). If we consider the AMR as unknown, the SFH-recovery algorithm is able to accurately recover the input AMR, at the price of an increase of random errors in the SFR(t) by a factor of about 2.5. Experiments of SFH-recovery performed for varying distance modulus and reddening indicate that these parameters can be determined with (relative) accuracies of Delta(m-M)(0) similar to 0.02 mag and Delta E(B-V) similar to 0.01 mag, for each individual field over the LMC. The propagation of these errors in the SFR(t) implies systematic errors below 30%. This level of accuracy in the SFR(t) can reveal significant imprints in the dynamical evolution of this unique and nearby stellar system, as well as possible signatures of the past interaction between the MCs and the MW.
Resumo:
AIM: To evaluate effects of pre- and postnatal protein deprivation and postnatal recovery on the myenteric plexus of the rat esophagus. METHODS: Three groups of young Wistar rats (aged 42 d) were studied: normal-fed (N42), protein-deprived (D42), and protein-recovered (R42). The myenteric neurons of their esophagi were evaluated by histochemical reactions for nicotinamide adenine dinucleotide (NADH), nitrergic neurons (NADPH)-diaphorase and acetylcholinesterase (AChE), immunohistochemical reaction for vasoactive intestinal polypeptide (VIP), and ultrastructural analysis by transmission electron microscopy. RESULTS: The cytoplasms of large and medium neurons from the N42 and R42 groups were intensely reactive for NADH. Only a few large neurons from the D42 group exhibited this aspect. NADPH detected in the D42 group exhibited low reactivity. The AChE reactivity was diffuse in neurons from the D42 and R42 groups. The density of large and small varicosities detected by immunohistochemical staining of VIP was low in ganglia from the D42 group. In many neurons from the D42 group, the double membrane of the nuclear envelope and the perinuclear cisterna were not detectable. NADH and NADPH histochemistry revealed no group differences in the profile of nerve cell perikarya (ranging from 200 to 400 mu m(2)). CONCLUSION: Protein deprivation causes a delay in neuronal maturation but postnatal recovery can almost completely restore the normal morphology of myenteric neurons. (C) 2010 Baishideng. All rights reserved.
Resumo:
Secondary forests are an increasingly common feature in tropical landscapes worldwide and understanding their regeneration is necessary to design effective restoration strategies. It has previously been shown that the woody species community in secondary forests can follow different successional pathways according to the nature of past human activities in the area, yet little is known about patterns of herbaceous species diversity in secondary forests with different histories of land use. We compared the diversity and abundance of herbaceous plant communities in two types of Central Amazonian secondary forests-those regenerating on pastures created by felling and burning trees and those where trees were felled only. We also tested if plant density and species richness in secondary forests are related to proximity to primary forest. In comparison with primary forest sites, forests regenerating on non-burned habitats had lower herbaceous plant density and species richness than those on burned ones. However, species composition and abundance in non-burned stands were more similar to those of primary forest, whereas several secondary forest specialist species were found in burned stands. In both non-burned and burned forests, distance from the forest edge was not related to herbaceous density and species richness. Overall, our results suggest that the natural regeneration of herbaceous species in secondary tropical forests is dependent on a site`s post-clearing treatment. We recommend evaluating the land history of a site prior to developing and implementing a restoration strategy, as this will influence the biological template on which restoration efforts are overlaid.