4 resultados para food webs
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In networks of plant-animal mutualisms, different animal groups interact preferentially with different plants, thus forming distinct modules responsible for different parts of the service. However, what we currently know about seed dispersal networks is based only on birds. Therefore, we wished to fill this gap by studying bat-fruit networks and testing how they differ from bird-fruit networks. As dietary overlap of Neotropical bats and birds is low, they should form distinct mutualistic modules within local networks. Furthermore, since frugivory evolved only once among Neotropical bats, but several times independently among Neotropical birds, greater dietary overlap is expected among bats, and thus connectance and nestedness should be higher in bat-fruit networks. If bat-fruit networks have higher nestedness and connectance, they should be more robust to extinctions. We analyzed 1 mixed network of both bats and birds and 20 networks that consisted exclusively of either bats (11) or birds (9). As expected, the structure of the mixed network was both modular (M = 0.45) and nested (NODF = 0.31); one module contained only birds and two only bats. In 20 datasets with only one disperser group, bat-fruit networks (NODF = 0.53 +/- A 0.09, C = 0.30 +/- A 0.11) were more nested and had a higher connectance than bird-fruit networks (NODF = 0.42 +/- A 0.07, C = 0.22 +/- A 0.09). Unexpectedly, robustness to extinction of animal species was higher in bird-fruit networks (R = 0.60 +/- A 0.13) than in bat-fruit networks (R = 0.54 +/- A 0.09), and differences were explained mainly by species richness. These findings suggest that a modular structure also occurs in seed dispersal networks, similar to pollination networks. The higher nestedness and connectance observed in bat-fruit networks compared with bird-fruit networks may be explained by the monophyletic evolution of frugivory in Neotropical bats, among which the diets of specialists seem to have evolved from the pool of fruits consumed by generalists.
Resumo:
Mutualisms often form networks of interacting species, characterized by the existence of a central core of species that potentially drive the ecology and the evolution of the whole community. Centrality measures allow quantification of how central or peripheral a species is within a network, thus informing about the role of each species in network organization, dynamics, and stability. In the present study we addressed the question whether the structural position of species in the network (i.e. their topological importance) relates to their ecological traits. We studied interactions between cleaner and client reef fishes to identify central and peripheral species within a mutualistic network, and investigated five ecological correlates. We used three measures to estimate the level of centrality of a species for distinct structural patterns, such as the number of interactions and the structural proximity to other species. Through the use of a principal component analysis (PCA) we observed that the centrality measures were highly correlated (92.5%) in the studied network, which indicates that the same species plays a similar role for the different structural patterns. Three cleaner and ten client species had positive values of centrality, which suggests that these species are modulating ecological and evolutionary dynamics within the network. Higher centralities were related to higher abundances and feeding habits for client fishes, but not for cleaners. The high correlation between centrality measures in the present study is likely related to the nested structure of the cleaning network. The cleaner species` set, by having central species that are not necessarily the most abundant ones, bears potentially more vulnerable points for network cohesiveness. Additionally, the present study generalizes previous findings for plant-animal mutualisms, as it shows that the structure of marine mutualisms is also related to a complex interplay between abundance and niche-related features.
Resumo:
P>1. Much of the current understanding of ecological systems is based on theory that does not explicitly take into account individual variation within natural populations. However, individuals may show substantial variation in resource use. This variation in turn may be translated into topological properties of networks that depict interactions among individuals and the food resources they consume (individual-resource networks). 2. Different models derived from optimal diet theory (ODT) predict highly distinct patterns of trophic interactions at the individual level that should translate into distinct network topologies. As a consequence, individual-resource networks can be useful tools in revealing the incidence of different patterns of resource use by individuals and suggesting their mechanistic basis. 3. In the present study, using data from several dietary studies, we assembled individual-resource networks of 10 vertebrate species, previously reported to show interindividual diet variation, and used a network-based approach to investigate their structure. 4. We found significant nestedness, but no modularity, in all empirical networks, indicating that (i) these populations are composed of both opportunistic and selective individuals and (ii) the diets of the latter are ordered as predictable subsets of the diets of the more opportunistic individuals. 5. Nested patterns are a common feature of species networks, and our results extend its generality to trophic interactions at the individual level. This pattern is consistent with a recently proposed ODT model, in which individuals show similar rank preferences but differ in their acceptance rate for alternative resources. Our findings therefore suggest a common mechanism underlying interindividual variation in resource use in disparate taxa.
Resumo:
A new complex network model is proposed which is founded on growth, with new connections being established proportionally to the current dynamical activity of each node, which can be understood as a generalization of the Barabasi-Albert static model. By using several topological measurements, as well as optimal multivariate methods (canonical analysis and maximum likelihood decision), we show that this new model provides, among several other theoretical kinds of networks including Watts-Strogatz small-world networks, the greatest compatibility with three real-world cortical networks.