4 resultados para experimental diabetes

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity and insulin resistance are highly correlated with metabolic disturbances. Both the excess and lack of adipose tissue can lead to severe insulin resistance and diabetes. Adipose tissue plays an active role in energy homeostasis, hormone secretion, and other proteins that affect insulin sensitivity, appetite, energy balance, and lipid metabolism. Rats with streptozotocin-induced diabetes during the neonatal period develop the classic diabetic picture of hyperglycemia, hypoinsulinemia, and insulin resistance in adulthood. Low body weight and reduced epididymal (EP) fit mass were also seen in this model. The am) of this study was to investigate the glucose homeostasis and metabolic repercussions on the adipose tissue following chronic treatment with antidiabetic drugs in these animals. In the 4th week post birth, diabetic animals started an 8-week treatment with pioglitazone, metformin, or insulin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new vanadium (IV) complex with the monoanion of 2,3-dihydroxypyridine (H(2)dhp), or 3-hydroxy-2(1H)-pyridone, was synthesized, characterized by physicochemical techniques and tested biologically. The EPR data for the [VO(Hdhp)(2)] complex in DMF are: g(x) = 1.9768, g(y) = 1.9768 and g(z) = 1.9390; A values (10(-4) cm(-1)): A(x), 59.4; A(y//), 59.4; A(z), 171.0. The vV=O band in the IR spectrum of the complex is at 986 cm(-1). The complex is paramagnetic, with mu(eff) = 1.65 BM (d(1), spin-only) at 25 degrees C. The irreversible oxidation process [V(V)/V(IV)] of the [VO(Hdhp)(2)] complex, as revealed in a cyclic voltammogram, occurs at 876 mV. The calculated molecular structure of [VO(Hdhp)(2)] shows the vanadium(IV) center in a distorted square pyramidal environment, with the oxo ligand in the apical position and the oxygen donor atoms of the Hdhp ligands in the basal positions. The ability of [VO(Hdhp)(2)] to mimic insulin, and its toxicity to hepato-biliary functions, were investigated in streptozotocin-induced diabetic rats and it was concluded that the length of treatment and the amount of [VO(Hdhp)(2)] administered were effective in reducing experimental diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>The genesis and progression of diabetes occur due in part to an uncontrolled inflammation profile with insulin resistance, increased serum levels of free fatty acids (FFA), proinflammatory cytokines and leucocyte dysfunction. In this study, an investigation was made of the effect of a 3-week moderate exercise regimen on a treadmill (60% of VO(2max), 30 min/day, 6 days a week) on inflammatory markers and leucocyte functions in diabetic rats. The exercise decreased serum levels of tumour necrosis factor (TNF)-alpha (6%), cytokine-induced neutrophil chemotactic factor 2 alpha/beta (CINC-2 alpha/beta) (9%), interleukin (IL)-1 beta (34%), IL-6 (86%), C-reactive protein (CRP) (41%) and FFA (40%) in diabetic rats when compared with sedentary diabetic animals. Exercise also attenuated the increased responsiveness of leucocytes from diabetics when compared to controls, diminishing the reactive oxygen species (ROS) release by neutrophils (21%) and macrophages (28%). Exercise did not change neutrophil migration and the proportion of neutrophils and macrophages in necrosis (loss of plasma membrane integrity) and apoptosis (DNA fragmentation). Serum activities of creatine kinase (CK) and lactate dehydrogenase (LDH) were not modified in the conditions studied. Therefore, physical training did not alter the integrity of muscle cells. We conclude that moderate physical exercise has marked anti-inflammatory effects on diabetic rats. This may be an efficient strategy to protect diabetics against microorganism infection, insulin resistance and vascular complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>It is known that the development of diabetic complications in human pregnancy is directly related to the severity and the duration of this pathology. In this study, we developed a model of long-term type 1 diabetes to investigate its effects on the cytoarchitecture, extracellular matrix and cell proliferation during the first adaptation phase of the myometrium for pregnancy. A single dose of alloxan was used to induce diabetes in mice prior to pregnancy. To identify the temporal effects of diabetes the mice were divided into two groups: Group D1 (females that became pregnant 90-100 days after alloxan); Group D2 (females that became pregnant 100-110 days after alloxan). Uterine samples were collected after 168 h of pregnancy and processed for light and electron microscopy. In both groups the histomorphometric evaluation showed that diabetes promoted narrowing of the myometrial muscle layers which was correlated with decreased cell proliferation demonstrated by PCNA immunodetection. In D1, diabetes increased the distance between muscle layers and promoted oedema. Contrarily, in D2 the distance between muscle layers decreased and, instead of oedema, there was a markedly deposition of collagen in the myometrium. Ultrastructural analysis showed that diabetes affects the organization of the smooth muscle cells and their myofilaments. Consistently, the immunoreaction for smooth muscle alpha-actin revealed clear disorganization of the contractile apparatus in both diabetic groups. In conclusion, the present model demonstrated that long-term diabetes promotes significant alterations in the myometrium in a time-sensitive manner. Together, these alterations indicate that diabetes impairs the first phenotypic adaptation phase of the pregnant myometrium.