7 resultados para excipients
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Differential Scanning Calorimetry (DSC), thermogravimetry/derivative thermogravimetry (TG/DTG) and infrared spectroscopy (IR) techniques were used to investigate the compatibility between prednicarbate and several excipients commonly used in semi solid pharmaceutical form. The thermoanalytical studies of 1:1 (m/m) drug/excipient physical mixtures showed that the beginning of the first thermal decomposition stage of the prednicarbate (T (onset) value) was decreased in the presence of stearyl alcohol and glyceryl stearate compared to the drug alone. For the binary mixture of drug/sodium pirrolidone carboxilate the first thermal decomposition stage was not changed, however the DTG peak temperature (T (peak DTG)) decreased. The comparison of the IR spectra of the drug, the physical mixtures and of the thermally treated samples confirmed the thermal decomposition of prednicarbate. By the comparison of the thermal profiles of 1:1 prednicarbate:excipients mixtures (methylparaben, propylparaben, carbomer 940, acrylate crosspolymer, lactic acid, light liquid paraffin, isopropyl palmitate, myristyl lactate and cetyl alcohol) no interaction was observed.
Resumo:
Captopril (CAP) was the first commercially available angiotensine-converting enzyme (ACE) inhibitor. In the anti-hypertensive therapy is considered the selected drug has to be therapeutically effective together with reduced toxicity. CAP is an antihypertensive drug currently being administered in tablet form. In order to investigate the possible interactions between CAP and excipients in tablets formulations, differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis completed by X-ray powder diffraction (XRPD) and Fourier transform infrared spectroscopy (FTIR) were used for compatibility studies. A possible drug-excipient interaction was observed with magnesium stearate by DSC technique.
Resumo:
Powder mixtures (1:1) of tibolone polymorphic forms I (monoclinic) and II (triclinic) and excipients have been prepared and compacted. The samples were stored at 50 degrees C and 90% RH for one month and subsequently were evaluated using differential scanning calorimetry (DSC) and high-performance liquid chromatography (HPLC). The results indicate that during the compaction, the applied pressure reduced the chemical stability of tibolone in both polymorph forms. The triclinic form was more chemically unstable, both pure and in contact with excipients, than the monoclinic form. Lactose monohydrate was shown to reduce chemical degradation for both forms. Ascorbyl palmitate was shown to affect the tibolone stability differently depending on the polymorphic form used.
Resumo:
The thermal decomposition of salbutamol (beta(2) - selective adrenoreceptor) was studied using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG). It was observed that the commercial sample showed a different thermal profile than the standard sample caused by the presence of excipients. These compounds increase the thermal stability of the drug. Moreover, higher activation energy was calculated for the pharmaceutical sample, which was estimated by isothermal and non-isothermal methods for the first stage of the thermal decomposition process. For isothermal experiments the average values were E(act) = 130 kJ mol(-1) (for standard sample) and E(act) = 252 kJ mol(-1) (for pharmaceutical sample) in a dynamic nitrogen atmosphere (50 mL min(-1)). For non-isothermal method, activation energy was obtained from the plot of log heating rates vs. 1/T in dynamic air atmosphere (50 mL min(-1)). The calculated values were E(act) = 134 kJ mol(-1) (for standard sample) and E(act) (=) 139 kJ mol(-1) (for pharmaceutical sample).
Resumo:
This paper demonstrates the application of thermal analysis in compatibility and stability studies between it ACE inhibitor (enalapril maleate) and excipients. The results have helped to elucidate the reason of a stability problem observed (luring the storage of enalapril maleate tablets. Incompatibility between enalapril maleate and colloidal silicon dioxide was detected. Besides, it was confirmed that the reaction between enalapril maleate and NaHCO3 increases the thermal stability of the drug. This Study Supports the importance of using thermoanalytical methods in the development of pharmaceuticals.
Resumo:
In the present study dissolution tests and thermoanalytical (TA) techniques were applied to metronidazole tablets from five laboratories (R, G, SA, SB, SC) available on the Brazilian market. The TA profiles indicated that in some formulations interactions between components led to eutectic products with lower melting points than metronidazole. The formulations SB and SC showed dissolution profiles that did not agree with published standards, confirming the TA results. All dissolution data were mathematically compared with kinetic models of release, demonstrating the main release mechanism was first order in all the tablets. The formulations were statistically compared by ANOVA and post-hoc tests (Tukey and Newman-Keuls), reveling significant differences in dissolution efficiency (DE).
Resumo:
In this work, TG/DTG and DSC techniques were used to the determination of thermal behavior of prednicarbate alone and associated with glyceryl stearate excipient ( 1: 1 physical mixture). TG/DTG curves obtained for the binary mixture showed a reduction of approximately 37 degrees C to the thermal stability of drug (T(dm/dt-0) (Max)(DTG)). The disappearance of stretching band at 1280 cm(-1) (nu(as) C-O, carbonate group) and the presence of streching band with less intensity at 1750 cm(-1) (nu(s) C-O, ester group) in IR spectrum obtained to the binary mixture submitted at 220 degrees C, when compared with IR spectrum of drug submitted to the same temperature, confirmed the chemical interaction between these substances due to heating. Kinetics parameters of decomposition reaction of prednicarbate were obtained using isothermal (Arrhenius equation) and non-isothermal (Ozawa) methods. The reduction of approximately 45% of activation energy value (E(a)) to the first step of thermal decomposition reaction of drug in the 1:1 (mass/mass) physical mixture was observed by both kinetics methods.