3 resultados para emphasis
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Tribe Pogonieae (Orchidaceae), as Currently known, comprises live genera distributed from South to North America and Eastern Asia. Phylogenetic inferences within Cleistes and among genera of tribe Pogonieae were made based oil nrDNA (ITS) and cpDNA (trnL-F, rps16, rbcL, and psaB) Sequence data and maximum parsimony. Eighteen species of Cleistes, members of all other genera of Pogonieae, and outgroups were sampled. Analyses based oil individual DNA regions provided similar topologies. All evidence indicates that Cleistes is paraphyletic. The North American C. divaricata and C bifaria are more closely related to the temperate genera Isotria and Pogonia than to their Central and South American congeners, the latter Constituting a monophyletic group characterized by the production of nectar as reward, tuberous roots, and their distribution in Central and South America. The Amazonian Duckeella is sister to the remainder of Pogonieae. Taxonomic and biogeographic implications are discussed, and morphological synapomorphies are given For clades obtained in the inferred molecular phylogeny. (C) 2008 Gesellschaft fur Biologische Systematik. Published by Elsevier GmbH. All rights reserved.
Resumo:
A relatively large amount of variation occurs in the reproductive ecology of tropical snakes, and this variation is generally regarded as being a consequence of seasonality in climate and prey availability. In some groups, even closely related species may differ in their reproductive ecology; however, in others it seems to be very conservative. Here we explore whether characters related to reproduction are phylogenetically constrained in a monophyletic group of snakes, the subfamily Dipsadinae, which ranges from Mexico to southern South America. We provide original data on reproduction for Leptodeira annulata, Imantodes cenchoa, and three species of Sibynomorphus from southern, southeastern and central Brazil, and data from literature for other species and populations of dipsadines. Follicular cycles were seasonal in Atractus reticulatus, Dipsa, albifrons, Hypsiglena torquata, Leptodeira maculata, L. punctata, Sibynomorphus spp. and Sibon sanniola from areas where climate is seasonal. In contrast, extended or continuous follicular cycles were recorded in Dipsas catesbyi, D. neivai, Imantodes cenchoa, Leptodeira annulata, and Ninia maculata from areas with seasonal and aseasonal climates. Testicular cycles also varied from seasonal (in H. torquiata) to continuous (in Dipsa,5 spp., Leptodeira annulata, L. maculata, N. maculata, and Sibynomorphus spp.). Most dipsadines are small (less than 500 rum SVL), and females attain sexual maturity with similar relative body size than males. Sexual dimorphism occurred in terms of SVL and tail length in most species, and clutch size tended to be small (less than five eggs). Combat behavior occurs in Imantodes cenchoa, which did not show sexual size dimorphism. Reproductive timing, for both females and males, varied among species but in general there were no differences between the tribes of Dipsadinae in most of the reproductive characteristics, such as mean body size, relative size at sexual maturity, sexual size and tail dimorphism, duration of vitellogenesis or egg-carrying in oviducts.
Resumo:
The genome sequence of Aedes aegypti was recently reported. A significant amount of Expressed Sequence Tags (ESTs) were sequenced to aid in the gene prediction process. In the present work we describe an integrated analysis of the genomic and EST data, focusing on genes with preferential expression in larvae (LG), adults (AG) and in both stages (SG). A total of 913 genes (5.4% of the transcript complement) are LG, including ion transporters and cuticle proteins that are important for ion homeostasis and defense. From a starting set of 245 genes encoding the trypsin domain, we identified 66 putative LG, AG, and SG trypsins by manual curation. Phylogenetic analyses showed that AG trypsins are divergent from their larval counterparts (LG), grouping with blood-induced trypsins from Anopheles gambiae and Simulium vittatum. These results support the hypothesis that blood-feeding arose only once, in the ancestral Culicomorpha. Peritrophins are proteins that interlock chitin fibrils to form the peritrophic membrane (PM) that compartmentalizes the food in the midgut. These proteins are recognized by having chitin-binding domains with 6 conserved Cys and may also present mucin-like domains (regions expected to be highly O-glycosylated). PM may be formed by a ring of cells (type 2, seen in Ae. aegypti larvae and Drosophila melanogaster) or by most midgut cells (type 1, found in Ae. aegypti adult and Tribolium castaneum). LG and D. melanogaster peritrophins have more complex domain structures than AG and T. castaneum peritrophins. Furthermore, mucin-like domains of peritrophins from T. castaneum (feeding on rough food) are lengthier than those of adult Ae. aegypti (blood-feeding). This suggests, for the first time, that type 1 and type 2 PM may have variable molecular architectures determined by different peritrophins and/or ancillary proteins, which may be partly modulated by diet.