8 resultados para electrostatic bending

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated plasma turbulence at the edge of a tokamak plasma using data from electrostatic potential fluctuations measured in the Brazilian tokamak TCABR. Recurrence quantification analysis has been used to provide diagnostics of the deterministic content of the series. We have focused our analysis on the radial dependence of potential fluctuations and their characterization by recurrence-based diagnostics. Our main result is that the deterministic content of the experimental signals is most pronounced at the external part of the plasma column just before the plasma radius. Since the chaoticity of the signals follows the same trend, we have concluded that the electrostatic plasma turbulence at the tokamak plasma edge can be partially explained by means of a deterministic nonlinear system. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed classical molecular dynamics simulations of the vapor-deposition of alpha-T4 oligomers on the TiO(2)-anatase (101) surface, comparing different sets of charges associated with the atoms of the model. The potential energy surfaces for alpha-T4 and TiO(2) were described by re-parametrizations of the Universal force field with charges given by the charge equilibration (QEq) scheme, or with fixed charges obtained by an ab initio method using the Hirshfeld partition. The two sets of charges lead to completely different results for the interface formation, and for the characteristics of the organic film, with a clearly defined alpha-T4 contact layer in the QEq case, and a more homogeneous molecular distribution when using Hirshfeld charges. The main reason for the discrepancy was found to be the incorrect charge assignment given by QEq to the sulfur and alpha-carbon atoms in thiophenes, and highlight the relevance of long-range interactions in the organization of molecular films. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies involving chitosan interacting with phospholipid monolayers that mimic cell membranes have brought molecular-level evidence for some of the physiological actions of chitosan, as in removing a protein from the membrane. This interaction has been proven to be primarily of electrostatic origin because of the positive charge OF chitosan in low pH solutions, but indirect evidence has also appeared of the presence of hydrophobic interactions. In this study, we provide definitive proof that model membranes are not affected merely by the charges in the amine groups of chitosan. Such a proof was obtained by comparing surface pressure and surface potential isotherms of dipalmitoyl phosphatidyl choline (DPPC) and dipalmitoyl phosphatidyl glycerol (DPPG) monolayers incorporating either chitosan or poly(allylamine hydrochloride) (PAH). As the latter is also positively charged and With the same charged Functional group as chitosan, similar effects should be observed in case the electrical charge was the only relevant parameter. Instead, we observed a large expansion in the surface pressure isotherms upon interaction with chitosan, whereas PAH had much smaller effects. Of particular relevance for biological implications, chitosan considerably reduced the monolayer elasticity, whereas PAH had almost no effect. it is clear therefore that chitosan action depends strongly either on its functional uncharged groups and/or on its specific conformation in solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report new paleomagnetic and geochronological data from Ediacaran rift-drift carbonates in the Paraguai belt at the southern end of the suture zone between the Amazon craton and the Sao Francisco and Rio de Plata cratons, South America. Early thrusting resulted in remagnetization ca. 528 +/- 36 Ma or later; the mean age is established by (40)Ar/(39)Ar encapsulation dating of mixed authigenic and detrital illite from remagnetized carbonates from the unmetamorphosed fold-thrust belt. This remagnetization overlaps with a 525 Ma Gondwana reference pole. Metamorphic illite from the slate belt yields (40)Ar/(39)Ar ages of 496-484 Ma, the timing of peak regional metamorphism. Oroclinal bending of the Paraguai belt was caused by a 90 degrees clockwise rotation of the east-west limb after ca. 528 Ma, probably reflecting the irregular margin of the southeast Amazon craton. The age of the Paraguai belt overlaps with that of the Pampean orogeny farther south along the western margin of the Rio de Plata craton, suggesting a coeval closure for the Clymene ocean separating the Amazon craton from the Sao Francisco and Rio de Plata cratons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal alpha-tropomyosin (Tm) is a dimeric coiled-coil protein that forms linear assemblies under low ionic strength conditions in vitro through head-to-tail interactions. A previously published NMR structure of the Tin head-to-tail complex revealed that it is formed by the insertion of the N-terminal coiled-coil of one molecule into a cleft formed by the separation of the helices at the C-terminus of a second molecule. To evaluate the contribution of charged residues to complex stability, we employed single and double-mutant Tm fragments in which specific charged residues were changed to alanine in head-to-tail binding assays, and the effects of the mutations were analyzed by thermodynamic double-mutant cycles and protein-protein docking. The results show that residues K5, K7, and D280 are essential to the stability of the complex. Though D2, K6, D275, and H276 are exposed to the solvent and do not participate in intermolecular contacts in the NMR structure, they may contribute to head-to-tail complex stability by modulating the stability of the helices at the Tm termini.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is aimed at studying the adsorption mechanism of short chain 20-mer pyrimidinic homoss-DNA (oligodeoxyribonucleotide, ODN: polyC(20) and polyT(20)) onto CNT by reflectometry. To analyze the experimental data, the effective-medium theory using the Bruggemann approximation represents a Suitable optical model to account for the surface properties (roughness, thickness, and optical constants) and the size of the adsorbate. Systematic information about the involved interactions is obtained by changing the physicochemical properties of the system. Hydrophobic and electrostatic interactions are evaluated by comparing the adsorption oil hydrophobic CNT and oil hydrophilic silica and by Modulating the ionic Strength With and without Mg(2+). The ODN adsorption process oil CNT is driven by hydrophobic interactions only when the electrostatic repulsion is Suppressed. The adsorption mode results in ODN molecules in a side-on orientation with the bases (nonpolar region) toward the surface. This unfavorable orientation is partially reverse by adding Mg(2+). On the other hand, the adsorption oil silica is dominated by the strong repulsive electrostatic interaction that is screened at high ionic strength or mediated by Mg(2+). The cation-mediated process induces the interaction of the phosphate backbone (polar region) with the surface, leaving the bases free for hybridization. Although the general adsorption behavior of the pyrimidine bases is the same, polyC(20) presents higher affinity for the CNT Surface due to its acid-base properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper describes the immobilization of nanoparticles onto conducting substrates by using both electrostatic layer-by-layer and electrophoretic deposition (EPD) methods. These two techniques were compared in high-performance electrochromic electrodes based on mixed nickel hydroxide nanoparticles. In addition to easy handling, EPD seems to be the most suitable method for the immobilization of nanoparticles, leading to higher electrochromic efficiencies, lower response times and higher stability upon coloration and bleaching cycling. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of MnO(2) nanoparticles were grown using the layer-by-layer method with poly (diallyldimetylammonium) as the intercalated layer. The film growth was followed by UV-vis, electrochemical quartz crystal microbalance (EQCM), and atomic force microscopy. Linear growth due to electrostatic immobilization of layers was observed up to 30 bilayers, but electrical connectivity was maintained only for 12 MnO(2)/PPDA bilayers. The electrochemical characterization of this film in 1-butyl-2,3-dimethyl-imidazolium (BMMI) bis(trifluoromethanesulfonyl)imide (TFSI) (BMMITFSI) with and without addition of a lithium salt indicated a higher electrochemical response of the nanostructured electrode in the lithium-containing electrolyte. On the basis of EQCM experiments, it was possible to confirm that the charge compensation process is achieved mainly by the TFSI anion at short times (<2 s) and by BMMI and lithium cations at longer times. The fact that large ions like TFSI and BMMI participate in the electroneutrality is attributed to the redox reaction that occurs at the superficial sites and to the high concentration of these species compared to that of lithium cations.