3 resultados para ecological box-model

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a recent study we found that crania from South Amerindian populations on each side of the Andes differ significantly in terms of craniofacial shape. Western populations formed one morphological group, distributed continuously over 14,000 km from the Fuegian archipelago (southern Chile) to the Zulia region (northwestern Venezuela). Easterners formed another group, distributed from the Atlantic Coast up to the eastern foothills of the Andes. This differentiation is further supported by several genetic studies, and indirectly by ecological and archaeological studies. Some authors suggest that this dual biological pattern is consistent with differential rates of gene flow and genetic drift operating on both sides of the Cordillera due to historical reasons. Here we show that such East-West patterning is also observable in North America. We suggest that the ""ecological zones model"" proposed by Dixon, explaining the spread of the early Americans along a Pacific dispersal corridor, combined with the evolution of different population dynamics in both regions, is the most parsimonious mechanism to explain the observed patterns of within- and between-group craniofacial variability. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leiopelma hochstetteri is an endangered New Zealand frog now confined to isolated populations scattered across the North Island. A better understanding of its past, current and predicted future environmental suitability will contribute to its conservation which is in jeopardy due to human activities, feral predators, disease and climate change. Here we use ecological niche modelling with all known occurrence data (N = 1708) and six determinant environmental variables to elucidate current, pre-human and future environmental suitability of this species. Comparison among independent runs, subfossil records and a clamping method allow validation of models. Many areas identified as currently suitable do not host any known populations. This apparent discrepancy could be explained by several non exclusive hypotheses: the areas have not been adequately surveyed and undiscovered populations still remain, the model is over simplistic; the species` sensitivity to fragmentation and small population size; biotic interactions; historical events. An additional outcome is that apparently suitable, but frog-less areas could be targeted for future translocations. Surprisingly, pre-human conditions do not differ markedly highlighting the possibility that the range of the species was broadly fragmented before human arrival. Nevertheless, some populations, particularly on the west of the North Island may have disappeared as a result of human mediated habitat modification. Future conditions are marked with higher temperatures, which are predicted to be favourable to the species. However, such virtual gain in suitable range will probably not benefit the species given the highly fragmented nature of existing habitat and the low dispersal ability of this species. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing efforts exist in integrating different levels of detail in models of the cardiovascular system. For instance, one-dimensional representations are employed to model the systemic circulation. In this context, effective and black-box-type decomposition strategies for one-dimensional networks are needed, so as to: (i) employ domain decomposition strategies for large systemic models (1D-1D coupling) and (ii) provide the conceptual basis for dimensionally-heterogeneous representations (1D-3D coupling, among various possibilities). The strategy proposed in this article works for both of these two scenarios, though the several applications shown to illustrate its performance focus on the 1D-1D coupling case. A one-dimensional network is decomposed in such a way that each coupling point connects two (and not more) of the sub-networks. At each of the M connection points two unknowns are defined: the flow rate and pressure. These 2M unknowns are determined by 2M equations, since each sub-network provides one (non-linear) equation per coupling point. It is shown how to build the 2M x 2M non-linear system with arbitrary and independent choice of boundary conditions for each of the sub-networks. The idea is then to solve this non-linear system until convergence, which guarantees strong coupling of the complete network. In other words, if the non-linear solver converges at each time step, the solution coincides with what would be obtained by monolithically modeling the whole network. The decomposition thus imposes no stability restriction on the choice of the time step size. Effective iterative strategies for the non-linear system that preserve the black-box character of the decomposition are then explored. Several variants of matrix-free Broyden`s and Newton-GMRES algorithms are assessed as numerical solvers by comparing their performance on sub-critical wave propagation problems which range from academic test cases to realistic cardiovascular applications. A specific variant of Broyden`s algorithm is identified and recommended on the basis of its computer cost and reliability. (C) 2010 Elsevier B.V. All rights reserved.