3 resultados para early modern humans

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Early American crania show a different morphological pattern from the one shared by late Native Americans. Although the origin of the diachronic morphological diversity seen on the continents is still debated, the distinct morphology of early Americans is well documented and widely dispersed. This morphology has been described extensively for South America, where larger samples are available. Here we test the hypotheses that the morphology of Early Americans results from retention of the morphological pattern of Late Pleistocene modern humans and that the occupation of the New World precedes the morphological differentiation that gave rise to recent Eurasian and American morphology. We compare Early American samples with European Upper Paleolithic skulls, the East Asian Zhoukoudian Upper Cave specimens and a series of 20 modern human reference crania. Canonical Analysis and Minimum Spanning Tree were used to assess the morphological affinities among the series, while Mantel and Dow-Cheverud tests based on Mahalanobis Squared Distances were used to test different evolutionary scenarios. Our results show strong morphological affinities among the early series irrespective of geographical origin, which together with the matrix analyses results favor the scenario of a late morphological differentiation of modern humans. We conclude that the geographic differentiation of modern human morphology is a late phenomenon that occurred after the initial settlement of the Americas. Am J Phys Anthropol 144:442-453, 2011. (c) 2010 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasmodium falciparum is distributed throughout the tropics and is responsible for an estimated 230 million cases of malaria every year, with a further 1.4 billion people at risk of infection [1-3]. Little is known about the genetic makeup of P. falciparum populations, despite variation in genetic diversity being a key factor in morbidity, mortality, and the success of malaria control initiatives. Here we analyze a worldwide sample of 519 P. falciparum isolates sequenced for two housekeeping genes (63 single nucleotide polymorphisms from around 5000 nucleotides per isolate). We observe a strong negative correlation between within-population genetic diversity and geographic distance from sub-Saharan Africa (R(2) = 0.95) over Africa, Asia, and Oceania. In contrast, regional variation in transmission intensity seems to have had a negligible impact on the distribution of genetic diversity. The striking geographic patterns of isolation by distance observed in P. falciparum mirror the ones previously documented in humans [4-7] and point to a joint sub-Saharan African origin between the parasite and its host. Age estimates for the expansion of P. falciparum further support that anatomically modern humans were infected prior to their exit out of Africa and carried the parasite along during their colonization of the world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mako bimodal volcanic belt of the Kedougou-Kenieba inlier is composed of volcanic basalts and peridotites interbedded by quartzites and limestones intruded by different generations of granitoids. The early volcanic episode of the belt is constituted of submarine basalts with peridotite similar to those of the oceanic abyssal plains. It is intruded by the Badon Kakadian TTG-granitic batholite dated around 2200 Ma. The second volcanic phase is constituted of basaltic, andesitic, and felsitic flows exhibit structures of aerial volcanic rocks. It is intruded by granites dated between 2160 and 2070 Ma. The general pattern of trace element variation of submarine volcanic rocks is consistent with those of basalts from oceanic plateaus which are the modern equivalent of the Archean greenstones belts. The Nd and Sr isotopic systematics typical of juvenile material indicates that the source of these igneous rocks is derived from a depleted mantle source. These results are consistent with the idea of a major accretion within the West African Craton occurring at about 2.1 Ga and corresponding to an important process of mantle-oceanic lithosphere differentiation.