150 resultados para e-Neuroscience
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The brain is a complex system that, in the normal condition, has emergent properties like those associated with activity-dependent plasticity in learning and memory, and in pathological situations, manifests abnormal long-term phenomena like the epilepsies. Data from our laboratory and from the literature were classified qualitatively as sources of complexity and emergent properties from behavior to electrophysiological, cellular, molecular, and computational levels. We used such models as brainstem-dependent acute audiogenic seizures and forebrain-dependent kindled audiogenic seizures. Additionally we used chemical OF electrical experimental models of temporal lobe epilepsy that induce status epilepticus with behavioral, anatomical, and molecular sequelae such as spontaneous recurrent seizures and long-term plastic changes. Current Computational neuroscience tools will help the interpretation. storage, and sharing of the exponential growth of information derived from those studies. These strategies are considered solutions to deal with the complexity of brain pathologies such as the epilepsies. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
This paper describes a visual stimulus generator (VSImG) capable of displaying a gray-scale, 256 x 256 x 8 bitmap image with a frame rate of 500 Hz using a boustrophedonic scanning technique. It is designed for experiments with motion-sensitive neurons of the fly`s visual system, where the flicker fusion frequency of the photoreceptors can reach up to 500 Hz. Devices with such a high frame rate are not commercially available, but are required, if sensory systems with high flicker fusion frequency are to be studied. The implemented hardware approach gives us complete real-time control of the displacement sequence and provides all the signals needed to drive an electrostatic deflection display. With the use of analog signals, very small high-resolution displacements, not limited by the image`s pixel size can be obtained. Very slow image displacements with visually imperceptible steps can also be generated. This can be of interest for other vision research experiments. Two different stimulus files can be used simultaneously, allowing the system to generate X-Y displacements on one display or independent movements on two displays as long as they share the same bitmap image. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Two experiments evaluated an operant procedure for establishing stimulus control using auditory and electrical stimuli as a baseline for measuring the electrical current threshold of electrodes implanted in the cochlea. Twenty-one prelingually deaf children, users of cochlear implants, learned a Go/No Go auditory discrimination task (i.e., pressing a button in the presence of the stimulus but not in its absence). When the simple discrimination baseline became stable, the electrical current was manipulated in descending and ascending series according to an adapted staircase method. Thresholds were determined for three electrodes, one in each location in the cochlea (basal, medial, and apical). Stimulus control was maintained within a certain range of decreasing electrical current but was eventually disrupted. Increasing the current recovered stimulus control, thus allowing the determination of a range of electrical currents that could be defined as the threshold. The present study demonstrated the feasibility of the operant procedure combined with a psychophysical method for threshold assessment, thus contributing to the routine fitting and maintenance of cochlear implants within the limitations of a hospital setting.
Resumo:
Testing contexts have been shown to critically influence experimental results in psychophysical studies. One of these contexts that show important modulation of the behavioral effects of different stimulatory conditions is the separate (blocked) or mixed presentation of these stimulatory conditions. The study presents evidence that the apparent discriminabilities of two target stimuli can change according to which of these two testing contexts is used. A cross inside a ring and a vertical line inside a ring were presented as go stimuli in a go/no-go reaction time task. In one experiment, each of these stimuli was presented to a different group of volunteers and in another experiment they were presented to the same group of volunteers, randomly mixed in the blocks of trials. Similar reaction times were obtained for the two stimuli in the first experiment, and different reaction times (faster for the cross) in the second experiment. The latter result indicates that the two stimuli have different discriminabilities from the no-go stimulus; the cross having greater discriminability. This difference is however masked, presumably by the adoption of specific compensatory attentional sets, in a separate testing context.
Resumo:
A neurociência compreende o estudo do controle neural das funções vegetativas, sensoriais e motoras; dos comportamentos de locomoção, reprodução e alimentação; e dos mecanismos da atenção, memória, aprendizagem, emoção, linguagem e comunicação. Tem, portanto, uma importante área de interface com a Psicologia. Dentre seus objetivos, a neurociência busca esclarecer os mecanismos das doenças neurológicas e mentais por meio do estudo do sistema nervoso normal e patológico. Sua evolução no Brasil tem ocorrido desde meados do século passado, e seu desenvolvimento foi incentivado pela criação de sociedades científicas específicas. O presente artigo relata esse desenvolvimento e descreve os principais grupos atuantes na neurociência brasileira.
Resumo:
A Psicofísica aplicada à Clínica com seres humanos pode prover ferramentas alternativas que auxiliem o acesso objetivo e quantificável a condições internas do paciente, que só poderiam ser obtidas, de outra forma, através de seus relatos e descrições. Um exemplo dessa parceria e aplicação da Psicofísica é o aparelho comercial C-Quant (Oculus Optikgeräte, Alemanha), cujo método psicofísico de acesso ao valor de dispersão de luz na retina foi desenvolvido pelo grupo de pesquisadores holandeses liderados pelo Prof. Dr. Thomas van den Berg, do Netherland Institute of Neuroscience (NIN). O acesso ao valor de dispersão de luz na retina é útil para auxiliar no diagnóstico de várias doenças oculares, como catarata. Neste artigo o método psicofísico presente no aparelho (Comparação da Compensação) é descrito.
Resumo:
In children with Duchenne muscular dystrophy, color vision losses have been related to dystrophin deletions downstream of exon 30, which affect a dystrophin isoform, Dp260, present in the retina. To further evaluate visual function in DMD children, we measured spatial, temporal, and chromatic red-green and blue-yellow contrast sensitivity in two groups of DMD children with gene deletion downstream and upstream of exon 30. Psychophysical spatial contrast sensitivity was measured for low, middle, and high spatial frequencies with achromatic gratings and for low and middle frequencies with red-green and blue-yellow chromatic gratings. Temporal contrast sensitivity was also measured with achromatic stimuli. A reduction in sensitivity at all spatial luminance contrasts was found for the DMD patients with deletion downstream of exon 30. Similar results were found for temporal luminance contrast sensitivity. Red-green chromatic contrast sensitivity was reduced in DMD children with deletion downstream of exon 30, whereas blue-yellow chromatic contrast sensitivity showed no significant differences. We conclude that visual function is impaired in DMD children. Furthermore, we report a genotype-phenotype relationship because the visual impairment occurred in children with deletion downstream but not upstream of exon 30, affecting the retinal isoform of dystrophin Dp260.
Resumo:
Classical and operant conditioning principles, such as the behavioral discrepancy-derived assumption that reinforcement always selects antecedent stimulus and response relations, have been studied at the neural level, mainly by observing the strengthening of neuronal responses or synaptic connections. A review of the literature on the neural basis of behavior provided extensive scientific data that indicate a synthesis between the two conditioning processes based mainly on stimulus control in learning tasks. The resulting analysis revealed the following aspects. Dopamine acts as a behavioral discrepancy signal in the midbrain pathway of positive reinforcement, leading toward the nucleus accumbens. Dopamine modulates both types of conditioning in the Aplysia mollusk and in mammals. In vivo and in vitro mollusk preparations show convergence of both types of conditioning in the same motor neuron. Frontal cortical neurons are involved in behavioral discrimination in reversal and extinction procedures, and these neurons preferentially deliver glutamate through conditioned stimulus or discriminative stimulus pathways. Discriminative neural responses can reliably precede operant movements and can also be common to stimuli that share complex symbolic relations. The present article discusses convergent and divergent points between conditioning paradigms at the neural level of analysis to advance our knowledge on reinforcement.
Resumo:
We measured the effects of epilepsy on visual contrast sensitivity to linear and vertical sine-wave gratings. Sixteen female adults, aged 21 to 50 years, comprised the sample in this study, including eight adults with generalized tonic-clonic seizure-type epilepsy and eight age-matched controls without epilepsy. Contrast threshold was measured using a temporal two-alternative forced-choice binocular psychophysical method at a distance of 150 cm from the stimuli, with a mean luminance of 40.1 cd/m². A one-way analysis of variance (ANOVA) applied to the linear contrast threshold showed significant differences between groups (F[3,188] = 14.829; p < .05). Adults with epilepsy had higher contrast thresholds (1.45, 1.04, and 1.18 times for frequencies of 0.25, 2.0, and 8.0 cycles per degree of visual angle, respectively). The Tukey Honestly Significant Difference post hoc test showed significant differences (p < .05) for all of the tested spatial frequencies. The largest difference between groups was in the lowest spatial frequency. Therefore, epilepsy may cause more damage to the neural pathways that process low spatial frequencies. However, epilepsy probably alters both the magnocellular visual pathway, which processes low spatial frequencies, and the parvocellular visual pathway, which processes high spatial frequencies. The experimental group had lower visual contrast sensitivity to all tested spatial frequencies.
Resumo:
Nepeta cataria (catnip) is a plant used in pet toys and to treat human diseases. Catnip has also been used in the treatment of some depressive disorders. In this paper, we studied the antidepressant, anxiogenic, and motor activity effects of acute and repeated feeding of chow enriched with 10% N. cataria leaves and the acute and repeated administration of apolar and polar extracts of N. cataria leaves in male mice. The results showed that repeated feeding and acute and repeated administration with the apolar extract reduced immobility in the behavioral despair test but did not alter elevated plus maze and open-field parameters. Acute feeding and the acute and repeated administration of the polar extracts of N. cataria leaves did not alter the behavior of mice. These data suggest that N. cataria has antidepressant properties. Moreover, this antidepressant activity was present in the apolar extract.
Resumo:
Background: Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings: In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion: The present results support these claims and the neural efficiency hypothesis.
Resumo:
Introduction: The successful integration of stem cells in adult brain has become a central issue in modern neuroscience. In this study we sought to test the hypothesis that survival and neurodifferentiation of mesenchymal stem cells (MSCs) may be dependent upon microenvironmental conditions according to the site of implant in the brain. Methods: MSCs were isolated from adult rats and labeled with enhanced-green fluorescent protein (eGFP) lentivirus. A cell suspension was implanted stereotactically into the brain of 50 young rats, into one neurogenic area (hippocampus), and into another nonneurogenic area (striatum). Animals were sacrificed 6 or 12 weeks after surgery, and brains were stained for mature neuronal markers. Cells coexpressing NeuN (neuronal specific nuclear protein) and GFP (green fluorescent protein) were counted stereologically at both targets. Results: The isolated cell population was able to generate neurons positive for microtubule-associated protein 2 (MAP2), neuronal-specific nuclear protein (NeuN), and neurofilament 200 (NF200) in vitro. Electrophysiology confirmed expression of voltage-gated ionic channels. Once implanted into the hippocampus, cells survived for up to 12 weeks, migrated away from the graft, and gave rise to mature neurons able to synthesize neurotransmitters. By contrast, massive cell degeneration was seen in the striatum, with no significant migration. Induction of neuronal differentiation with increased cyclic adenosine monophosphate in the culture medium before implantation favored differentiation in vivo. Conclusions: Our data demonstrated that survival and differentiation of MSCs is strongly dependent upon a permissive microenvironment. Identification of the pro-neurogenic factors present in the hippocampus could subsequently allow for the integration of stem cells into nonpermissive areas of the central nervous system.