13 resultados para dynamic factor models
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In the nonlinear phase of a dynamo process, the back-reaction of the magnetic field upon the turbulent motion results in a decrease of the turbulence level and therefore in a suppression of both the magnetic field amplification (the alpha-quenching effect) and the turbulent magnetic diffusivity (the eta-quenching effect). While the former has been widely explored, the effects of eta-quenching in the magnetic field evolution have rarely been considered. In this work, we investigate the role of the suppression of diffusivity in a flux-transport solar dynamo model that also includes a nonlinear alpha-quenching term. Our results indicate that, although for alpha-quenching the dependence of the magnetic field amplification with the quenching factor is nearly linear, the magnetic field response to eta-quenching is nonlinear and spatially nonuniform. We have found that the magnetic field can be locally amplified in this case, forming long-lived structures whose maximum amplitude can be up to similar to 2.5 times larger at the tachocline and up to similar to 2 times larger at the center of the convection zone than in models without quenching. However, this amplification leads to unobservable effects and to a worse distribution of the magnetic field in the butterfly diagram. Since the dynamo cycle period increases when the efficiency of the quenching increases, we have also explored whether the eta-quenching can cause a diffusion-dominated model to drift into an advection-dominated regime. We have found that models undergoing a large suppression in eta produce a strong segregation of magnetic fields that may lead to unsteady dynamo-oscillations. On the other hand, an initially diffusion-dominated model undergoing a small suppression in eta remains in the diffusion-dominated regime.
Resumo:
Voluntary physical activity improves memory and learning ability in rodents, whereas status epilepticus has been associated with memory impairment. Physical activity and seizures have been associated with enhanced hippocampal expression of BDNF, indicating that this protein may have a dual role in epilepsy. The influence of voluntary physical activity on memory and BDNF expression has been poorly studied in experimental models of epilepsy. In this paper, we have investigated the effect of voluntary physical activity on memory and BDNF expression in mice with pilocarpine-incluced epilepsy. Male Swiss mice were assigned to four experimental groups: pilocarpine sedentary (PS), pilocarpine runners (PRs), saline sedentary (SS) and saline runners (SRs). Two days after pilocarpine-induced status epilepticus, the affected mice (PR) and their running controls (SR) were housed with access to a running wheel for 28 days. After that, the spatial memory and the expression of the precursor and mature forms of hippocampal BDNF were assessed. PR mice performed better than PS mice in the water maze test. In addition, PR mice had a higher amount of mature BDNF (14 kDa) relative to the total BDNF (14 kDa + 28 kDa + 32 kDa forms) content when compared with PS mice. These results show that voluntary physical activity improved the spatial memory and increased the hippocampal content of mature BDNF of mice with pilocarpine-induced status epilepticus. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Diabetic patients have increased susceptibility to infection, which may be related to impaired inflammatory response observed in experimental models of diabetes, and restored by insulin treatment. The goal of this study was to investigate whether insulin regulates transcription of cytokines and intercellular adhesion molecule 1 (ICAM-1) via nuclear factor-kappa B (NF-kappa B) signaling pathway in Escherichia coli LIPS-induced lung inflammation. Diabetic male Wistar rats (alloxan, 42 mg/kg, iv., 10 days) and controls were instilled intratracheally with saline containing LPS (750 mu g/0.4 mL) or saline only. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU, s.c.) 2 h before LIPS. Analyses performed 6 h after LPS included: (a) lung and mesenteric lymph node IL-1 beta, TNF-alpha, IL-10, and ICAM-1 messenger RNA (mRNA) were quantified by real-time reverse transcriptase-polymerase chain reaction; (b) number of neutrophils in the bronchoalveolar lavage (BAL) fluid, and concentrations of IL-1 beta, TNF-alpha, and IL-10 in the BAL were determined by the enzyme-linked immunosorbent assay; and (c) activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were quantified by Western blot analysis. Relative to controls, diabetic rats exhibited a reduction in lung and mesenteric lymph node IL-1 beta (40%), TNF-alpha (similar to 30%), and IL-10 (similar to 40%) mRNA levels and reduced concentrations of IL-1 beta (52%), TNF-alpha (62%), IL-10 (43%), and neutrophil counts (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were almost suppressed in diabetic rats. Treatment of diabetic rats with insulin completely restored mRNA and protein levels of these cytokines and potentiated lung ICAM-1 mRNA levels (30%) and number of neutrophils (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were partially restored by insulin treatment. In conclusion, data presented suggest that insulin regulates transcription of proinflammatory (IL-1 beta, TNF-alpha) and anti-inflammatory (IL-10) cytokines, and expression of ICAM-1 via the NF-kappa B signaling pathway.
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
Two stochastic epidemic lattice models, the susceptible-infected-recovered and the susceptible-exposed-infected models, are studied on a Cayley tree of coordination number k. The spreading of the disease in the former is found to occur when the infection probability b is larger than b(c) = k/2(k - 1). In the latter, which is equivalent to a dynamic site percolation model, the spreading occurs when the infection probability p is greater than p(c) = 1/(k - 1). We set up and solve the time evolution equations for both models and determine the final and time-dependent properties, including the epidemic curve. We show that the two models are closely related by revealing that their relevant properties are exactly mapped into each other when p = b/[k - (k - 1) b]. These include the cluster size distribution and the density of individuals of each type, quantities that have been determined in closed forms.
Resumo:
Zwitterionic peptides with trypanocidal activity are promising lead compounds for the treatment of African Sleeping Sickness, and have motivated research into the design of compounds capable of disrupting the protozoan membrane. In this study, we use the Langmuir monolayer technique to investigate the surface properties of an antiparasitic peptide, namely S-(2,4-dinitrophenyl)glutathione di-2-propyl ester, and its interaction with a model membrane comprising a phospholipid monolayer. The drug formed stable Langmuir monolayers. whose main feature was a phase transition accompanied by a negative surface elasticity. This was attributed to aggregation upon compression due to intermolecular bond associations of the molecules, inferred from surface pressure and surface potential isotherms. Brewster angle microscopy (BAM) images, infrared spectroscopy and dynamic elasticity measurements. When co-spread with dipalmitoyl phosphatidyl choline (DPPC). the drug affected both the surface pressure and the monolayer morphology, even at high surface pressures and with low amounts of the drug. The results were interpreted by assuming a repulsive, cooperative interaction between the drug and DPPC molecules. Such repulsive interaction and the large changes in fluidity arising from drug aggregation may be related to the disruption of the membrane, which is key for the parasite killing property. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Frutalin is a homotetrameric alpha-D-galactose (D-Gal)-binding lectin that activates natural killer cells in vitro and promotes leukocyte migration in vivo. Because lectins are potent lymphocyte stimulators, understanding the interactions that occur between them and cell surfaces can help to the action mechanisms involved in this process. In this paper, we present a detailed investigation of the interactions of frutalin with phospho- and glycolipids using Langmuir monolayers as biomembrane models. The results confirm the specificity of frutalin for D-Gal attached to a biomembrane. Adsorption of frutalin was more efficient for the galactose polar head lipids, in contrast to the one for sulfated galactose, in which a lag time is observed, indicating a rearrangement of the monolayer to incorporate the protein. Regarding ganglioside GM1 monolayers, lower quantities of the protein were adsorbed, probably due to the farther apart position of D-galactose from the interface. Binary mixtures containing galactocerebroside revealed small domains formed at high lipid packing in the presence of frutalin, suggesting that lectin induces the clusterization and the forming of domains in vitro, which may be a form of receptor internalization. This is the first experimental evidence of such lectin effect, and it may be useful to understand the mechanism of action of lectins at the molecular level. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Dynamic Time Warping (DTW), a pattern matching technique traditionally used for restricted vocabulary speech recognition, is based on a temporal alignment of the input signal with the template models. The principal drawback of DTW is its high computational cost as the lengths of the signals increase. This paper shows extended results over our previously published conference paper, which introduces an optimized version of the DTW I hat is based on the Discrete Wavelet Transform (DWT). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigate several two-dimensional guillotine cutting stock problems and their variants in which orthogonal rotations are allowed. We first present two dynamic programming based algorithms for the Rectangular Knapsack (RK) problem and its variants in which the patterns must be staged. The first algorithm solves the recurrence formula proposed by Beasley; the second algorithm - for staged patterns - also uses a recurrence formula. We show that if the items are not so small compared to the dimensions of the bin, then these algorithms require polynomial time. Using these algorithms we solved all instances of the RK problem found at the OR-LIBRARY, including one for which no optimal solution was known. We also consider the Two-dimensional Cutting Stock problem. We present a column generation based algorithm for this problem that uses the first algorithm above mentioned to generate the columns. We propose two strategies to tackle the residual instances. We also investigate a variant of this problem where the bins have different sizes. At last, we study the Two-dimensional Strip Packing problem. We also present a column generation based algorithm for this problem that uses the second algorithm above mentioned where staged patterns are imposed. In this case we solve instances for two-, three- and four-staged patterns. We report on some computational experiments with the various algorithms we propose in this paper. The results indicate that these algorithms seem to be suitable for solving real-world instances. We give a detailed description (a pseudo-code) of all the algorithms presented here, so that the reader may easily implement these algorithms. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
XACb0070 is an uncharacterized protein coded by the two large plasmids isolated from Xanthomonas axonopodis pv. cirri, the agent of citrus canker and responsible for important economical losses in citrus world production. XACb0070 presents sequence homology only with other hypothetical proteins belonging to plant pathogens, none of which have their structure determined. The NMR-derived solution structure reveals this protein is a homodimer in which each monomer presents two domains with different structural and dynamic properties: a folded N-terminal domain with beta alpha alpha topology which mediates dimerization and a long disordered C-terminal tail. The folded domain shows high structural similarity to the ribbon-helix-helix transcriptional repressors, a family of DNA-binding proteins of conserved 3D fold but low sequence homology: indeed XACb0070 binds DNA. Primary sequence and fold comparison of XACb0070 with other proteins of the ribbon-helix-helix family together with examination of the genes in the vicinity of xacb0070 suggest the protein might be the component of a toxin-antitoxin system. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
RpfG is a paradigm for a class of widespread bacterial two-component regulators with a CheY-like receiver domain attached to a histidine-aspartic acid-glycine-tyrosine-proline (HD-GYP) cyclic di-GMP phosphodiesterase domain. In the plant pathogen Xanthomonas campestris pv. campestris (Xcc), a two-component system comprising RpfG and the complex sensor kinase RpfC is implicated in sensing and responding to the diffusible signaling factor (DSF), which is essential for cell-cell signaling. RpfF is involved in synthesizing DSF, and mutations of rpfF, rpfG, or rpfC lead to a coordinate reduction in the synthesis of virulence factors such as extracellular enzymes, biofilm structure, and motility. Using yeast two-hybrid analysis and fluorescence resonance energy transfer experiments in Xcc, we show that the physical interaction of RpfG with two proteins with diguanylate cyclase (GGDEF) domains controls a subset of RpfG-regulated virulence functions. RpfG interactions were abolished by alanine substitutions of the three residues of the conserved GYP motif in the HD-GYP domain. Changing the GYP motif or deletion of the two GGDEF-domain proteins reduced Xcc motility but not the synthesis of extracellular enzymes or biofilm formation. RpfG-GGDEF interactions are dynamic and depend on DSF signaling, being reduced in the rpfF mutant but restored by DSF addition. The results are consistent with a model in which DSF signal transduction controlling motility depends on a highly regulated, dynamic interaction of proteins that influence the localized expression of cyclic di-GMP.
Resumo:
The fluorescence quenching kinetics of two porphyrin dendrimer series (GnTPPH(2) and GnPZn) by different type of quenchers is reported. The microenvironment surrounding the core in GnPZn was probing by core-quencher interactions using benzimidazole. The dependence of quencher binding constant (K(a) ) on generation indicates the presence of a weak interaction between branches and the core of the porphyrin dendrimer. The similar free volume in dendrimers of third and fourth generation suggests that structural collapse in high generations occurs by packing of the dendrimer peripheral layer. Dynamic fluorescence quenching of the porphyrin core by 1,3-dicyanomethylene-2-methyl-2-pentyl-indan (PDCMI) in GnTPPH(2) is a distance dependent electron transfer process with an exponential attenuation factor beta=0.33 angstrom(-1). The quenching by 1,2-dibromobenzene occurs by diffusion process of the quencher toward to the porphyrin core, and its rate constant is practically independent of dendrimer generation.
Resumo:
The possibility to compress analyte bands at the beginning of CE runs has many advantages. Analytes at low concentration can be analyzed with high signal-to-noise ratios by using the so-called sample stacking methods. Moreover, sample injections with very narrow initial band widths (small initial standard deviations) are sometimes useful, especially if high resolutions among the bands are required in the shortest run time. In the present work, a method of sample stacking is proposed and demonstrated. It is based on BGEs with high thermal sensitive pHs (high dpH/dT) and analytes with low dpK(a)/dT. High thermal sensitivity means that the working pK(a) of the BGE has a high dpK(a)/dT in modulus. For instance, Tris and Ethanolamine have dpH/dT = -0.028/degrees C and -0.029/degrees C, respectively, whereas carboxylic acids have low dpK(a)/dT values, i.e. in the -0.002/degrees C to+0.002/degrees C range. The action of cooling and heating sections along the capillary during the runs affects also the local viscosity, conductivity, and electric field strength. The effect of these variables on electrophoretic velocity and band compression is theoretically calculated using a simple model. Finally, this stacking method was demonstrated for amino acids derivatized with naphthalene-2,3-dicarboxaldehyde and fluorescamine using a temperature difference of 70 degrees C between two neighbor sections and Tris as separation buffer. In this case, the BGE has a high pH thermal coefficient whereas the carboxylic groups of the analytes have low pK(a) thermal coefficients. The application of these dynamic thermal gradients increased peak height by a factor of two (and decreased the standard deviations of peaks by a factor of two) of aspartic acid and glutamic acid derivatized with naphthalene-2,3-dicarboxaldehyde and serine derivatized with fluorescamine. The effect of thermal compression of bands was not observed when runs were accomplished using phosphate buffer at pH 7 (negative control). Phosphate has a low dpH/dT in this pH range, similar to the dK(a)/dT of analytes. It is shown that vertical bar dK(a)/dT-dpH/dT vertical bar >> 0 is one determinant factor to have significant stacking produced by dynamic thermal junctions.