10 resultados para double-bond position
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The ionic liquids (ILs) 1-ethoxyethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [EtO-(CH(2))(2)MMI][Tf(2)N], and N-(ethoxyethyl)-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [EtO(CH(2))(2)MMor][Tf(2)N] were synthesized, and relevant properties, such as thermal stability, density, viscosity, electrochemical behavior, ionic conductivity, and self-diffusion coefficients for both ionic species, were measured and compared with those of their alkyl counterparts, 1-n-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, [BMMI][Tf(2)N], and N-n-butyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide,[BMP][Tf(2)N] and N-n-butyl-N-methylmorpholinium bis(trilfuoromethanesulfonyl)imide [BMMor][Tf(2)N][. This comparison was done to evaluate the effects caused by the presence of the ether bond in either the side chain or in the organic cation ring. The salt, LiTf(2)N, was added to the systems to estimate IL behavior with regard to lithium cation transport. Pure [EtO(CH(2))(2)MMI][Tf(2)N] and their LiTf(2)N solutions showed low viscosity and the highest conductivity among the ILs studied. The H(R) (AC conductivity/NMR calculated conductivity ratio) values showed that, after addition of LiTf(2)N, ILs containing the ether bond seemed to have a greater number of charged species. Structural reasons could explain these high observed HR values for [EtO(CH(2))(2)MMor][Tf(2)N].
Resumo:
Pure O-methyl N-methoxycarbonyl thiocarbamate CH(3)OC(S)N(H)C(O)OCH(3) (I) and O-ethyl N-methoxycarbonyl thiocarbamate, CH(3)CH(2)OC(S)N(H)C(O)OCH(3) (II), are quantitatively prepared by the addition reaction between the CH(3)OC(O)NCS and the corresponding alcohols. The compounds are characterized by multinuclear ((1)H and (13)C) and bi-dimensional ((13)C HSQC) NMR, GC-MS and FTIR spectroscopy techniques. Structural and conformational properties are analyzed using a combined approach involving crystallographic data, vibration spectra and theoretical calculations. The low-temperature (150 K) crystal structure of II was determined by X-ray diffraction methods. The substance crystallizes in the monoclinic space group P2(1)/n with a = 4.088(1)angstrom. b = 22.346(1)angstrom, c = 8.284(1)angstrom, beta = 100.687(3)degrees and Z = 4 molecules per unit cell. The conformation adopted by the thiocarbamate group -OC(S)N(H)- is syn (C=S double bond in synperiplanar orientation with respect to the N-H single bond), while the methoxycarbonyl C=O double bond is in antiperiplanar orientation with respect to the N-H bond. The non-H atoms in II are essentially coplanar and the molecules are arranged in the crystal lattice as centro-symmetric dimeric units held by N-H center dot center dot center dot S=C hydrogen bonds Id(N center dot center dot center dot S) = 3.387(1)angstrom, <(N-H center dot center dot center dot S) = 166.4(2)degrees]. Furthermore, the effect of the it electronic resonance in the structural and vibrational properties is also discussed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Irradiation with heavy ions can produce several modifications in the chain structure of polymers. These modifications can be related to scissioning and cross-linking of chemical bonds. which depend on the ion fluence and the density of energy deposited in the material. Stacked thin film Makrofol-KG (R) samples were irradiated with 350 MeV Au(26+) ions and FTIR absorption spectroscopy was used to determine the bond changes in the samples. Data on the absorption bands as a function of the fluence indicated a higher probability for simple-bonds scissioning than for double-bonds scissioning and no dependence on the number of double bonds breaking with ion fluence. Since sample irradiation was done in a non-track-overlapping regime, a novel process for double bonds formation is suggested: the excitation of a site in the material by only one incident ion followed by a double bond formation during the de-excitation process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A rational strategy was employed for design of an orthorhombic structure of lamivudine with maleic acid. On the basis of the lamivudine saccharinate structure reported in the literature, maleic acid was chosen to synthesize a salt with the anti-HIV drug because of the structural similarities between the salt formers. Maleic acid has an acid-ionization constant of the anti first proton and an arrangement of their hydrogen bonding functionalities similar to those of saccharin. Likewise, there is a saccharin-like conformational rigidity in maleic acid because of the hydrogen-bonded ring formation and the Z-configuration around the C=C double bond. As was conceivably predicted, lamivudine maleate assembles into a structure whose intermolecular architecture is related to that of saccharinate salt of the drug. Therefore, a molecular framework responsible for crystal assembly into a lamivudine saccharinate-like structure could be recognized in the salt formers. Furthermore, structural correlations and structure-solubility relationships were established for lamivudine maleate and saccharinate. Although there is a same molecular framework in maleic acid and saccharin, these salt formers are Structurally different in some aspects. When compared to saccharin, neither out-of-plane SO(2) oxygens nor a benzene group occur in maleic acid. Both features could be related to higher solubility of lamivudine maleate. Here, we also anticipate that multicomponent molecular crystals of lamivudine with other salt formers possessing the molecular framework responsible for crystal assembly can be engineered successfully.
Resumo:
Structural and conformational properties of 1H-Isoindole-1,3(2H)-dione, 2-[(methoxycarbonyl)thio] (S-phthalimido O-methyl thiocarbonate) are analyzed using a combined approach including X-ray diffraction, vibrational spectra and theoretical calculation methods. The vibrational properties have been studied by infrared and Raman spectroscopies along with quantum chemical calculations (B3LYP and B3PW91 functional in connection with the 6-311++G** and aug-cc-pVDZ basis sets). The crystal structure was determined by X-ray diffraction methods. The substance crystallizes in the monoclinic P2(1)/c space group with a = 6.795(1), b = 5.109(1), c = 30.011(3) angstrom, beta = 90.310(3)degrees and Z = 4 molecules per unit cell. The conformation adopted by the N-S-C=O group is syn (C=O double bond in synperiplanar orientation with respect to the N-S single bond). The experimental molecular structure is well reproduced by the MP2/aug-cc-pVDZ method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the present study, the mycosporine-like amino acids (MAAs) were isolated from the marine red alga Gracilaria tenuistipitata and analysed by high-resolution accurate-mass sequential mass spectrometry (MSn). In addition to the proposed fragmentation mechanism based on the MSn analysis, it is clearly demonstrated that the elimination of mass 15 is a radical processes taking place at the methoxyl substituent of the double bond. This characteristic loss of a methyl radical was studied by theoretical calculations and the homolytic cleavage of the O-C bond is suggested to be dependent on the bond weakening. The protonation site of the MAAs was indicated by analysis of the Fukui functions and the relative Gibbs energies of the several possible protonated forms. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the present work, the thermal behavior of prednicarbate was studied using DSC and TG/DTG. The solid product remaining at the first decomposition step of the drug was isolated by TG, in air and N(2) atmospheres and was characterized using LC-MS/MS, NMR, and IR spectroscopy. It was found that the product at the first thermal decomposition step of prednicarbate corresponds to the elimination of the carbonate group bonding to C(17), and a consequent formation of double bond between C(17) and C(16). Structure elucidation of this degradation product by spectral data has been discussed in detail.
Resumo:
A new approach for the synthesis of alpha,beta-unsaturated delta-lactones, a unit present in many natural products with interesting biological activities is described. The approach was based on the use of a vinyl telluride, and it is complementary to the methods using ring-closing metathesis. The sequence was performed in good overall yield with retention of the Z-double bond geometry. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Homoallylic alcohols (primary, secondary, or tertiary containing an endocyclic or an exocyclic double bond) react with equimolar amounts of aldehydes (aliphatic or aromatic) and ketones (aliphatic) in the presence of 5 mol % of iodine. This Prins cyclization was used in the preparation of hexahydrobenzo[f]isochromenes and of a 4-hydroxy-tetrahydropyran, in 54-81% yield. The procedure is also efficient for an aza-Prins cyclization of a homoallylic sulfonamide and benzaldehyde, producing a hexahydrobenzo[f]isoquinoline. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Purple acid phosphatases (PAPs) are a group of metallohydrolases that contain a dinuclear Fe(II)M(II) center (M(II) = Fe, Mn, Zn) in the active site and are able to catalyze the hydrolysis of a variety of phosphoric acid esters. The dinuclear complex [(H(2)O)Fe(III)(mu-OH)Zn(II)(L-H)](CIO(4))(2) (2) with the ligand 2-[N-bis(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-(2-pyridylmethyl)(2-hydroxybenzyl) aminomethyl]phenol (H(2)L-H) has recently been prepared and is found to closely mimic the coordination environment of the Fe(III)Zn(II) active site found in red kidney bean PAP (Neves et al. J. Am. Chem. Soc. 2007, 129, 7486). The biomimetic shows significant catalytic activity in hydrolytic reactions. By using a variety of structural, spectroscopic, and computational techniques the electronic structure of the Fe(III) center of this biomimetic complex was determined. In the solid state the electronic ground state reflects the rhombically distorted Fe(III)N(2)O(4) octahedron with a dominant tetragonal compression align ad along the mu-OH-Fe-O(phenolate) direction. To probe the role of the Fe-O(phenolate) bond, the phenolate moiety was modified to contain electron-donating or -withdrawing groups (-CH(3), -H, -Br, -NO(2)) in the 5-position. Tie effects of the substituents on the electronic properties of the biomimetic complexes were studied with a range of experimental and computational techniques. This study establishes benchmarks against accurate crystallographic struck ral information using spectroscopic techniques that are not restricted to single crystals. Kinetic studies on the hydrolysis reaction revealed that the phosphodiesterase activity increases in the order -NO(2)<- Br <- H <- CH(3) when 2,4-bis(dinitrophenyl)phosphate (2,4-bdnpp) was used as substrate, and a linear free energy relationship is found when log(k(cat)/k(0)) is plotted against the Hammett parameter a. However, nuclease activity measurements in the cleavage of double stranded DNA showed that the complexes containing the electron-withdrawing -NO(2) and electron-donating CH3 groups are the most active while the cytotoxic activity of the biomimetics on leukemia and lung tumoral cells is highest for complexes with electron-donating groups.