7 resultados para dissociation energy

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiconfiguration second-order perturbation theory, including relativistic effects and spin-orbit coupling, has been employed to investigate the nature of the chemical bonding in the ground state of Tc(2) and Re(2). The Tc(2) ground state is found to be a 0(g)(+) state, with an effective bond order (EBO) of 4.4, and a dissociation energy of 3.25 eV. The Re(2) ground state is a 1(g) state, with EBO = 4.3. Almost degenerate to it, is a 0(g)(+) state (T(e) = 77 cm(-1)), with EBO = 4.1. Experimental evidence also indicates that the ground state is of 1(g) nature. The dissociation energy is computed to be 5.0 eV in agreement with an experimental estimate of 4 +/- 1 eV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural, vibrational, and energetic properties of new molecular species, HSI and HIS are investigated for the first time using a state-of-the-art theoretical approach. These molecules can be easily differentiated by their geometric parameters and vibrational spectra. HSI is much more stable, and a direct unimolecular isomerization is very unlikely. Kinetics estimates predict that only at low temperatures there is a possibility of isolating HIS. For HS-I, we estimate a bond dissociation energy of 46.25 kcal/mol, and a heat of formation at 298.15 K of 12.84 kcal/mol. For the H(2)S + I(2) -> HSI + HI reaction enthalpy, we found 8.40 kcal/ mol. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gas-phase ion/molecule reactions of F(-) and EtO(-) with Ge(OEt)(4) yield readily and exclusively pentacoordinated complexes XGe(OEt)(4)(-) (X = F, EtO) at pressures in the 10(-8) T range as observed by FT-ICR techniques. These hypervalent species are prone to undergo sequential fragmentations induced by infrared multiphoton excitation that lead to a variety of germyl and germanate anions. In the case of FGe(OEt)(4)(-), three primary competitive channels are observed in the IRMPD process that can be identified as (EtO)(3)GeO(-), F(EtO)(2)GeO(-) and (EtO)(3)Ge(-). Ab initio calculations have been carried out to characterize the primary fragmentation paths induced by IRMPD and the most favorable structure of the resulting anions. The gas-phase acidity of a number of these germanium-containing ions have been estimated by bracketing experiments and by theoretical calculations. Germanate anions such as (EtO)(3)GeO(-) undergo some interesting reactions with H(2)S to give rise to anions such as (EtO)(3)GeS(-) and (EtO)(2)Ge(OH)S(-). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated noble gas copper bonds in linear complexes represented by the NgCuX general formula in which Ng and X stand for a noble gas (neon, argon, krypton, or xenon) and a halogen (fluorine, chlorine or bromine), respectively, by coupled cluster methods and modified cc-pVQZ basis sets. The quantum theory of atoms in molecules (QTAIM) shows a linear relation between the dissociation energy or noble gas-copper bonds and the amount of electronic charge transferred mainly from the noble gas to copper during complexation. Large changes in the QTAIM quadrupole moments of copper and noble gases resulting from this bonding and a comparison between NgCuX and NgNaCl systems indicate that these noble gas-copper bonds should be better interpreted as predominantly covalent. Finally, QTAIM atomic dipoles of noble gases in NgNaCl systems agree satisfactorily with atomic dipoles given by a simple model for these NgNa van der Waals bonds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemical mechanism of the (1)PN formation was successfully studied by using the CCSD(T)/6-311++G(3df,3pd) level of theory. The (1)NH(3) + (3)PH and (4)P + NH(3) reaction paths are not energetically favorable to form the (1)PN molecule. However, the (3)NH + (3)PH, (4)N + (3)PH(3), (4)N + (3)PH, (4)P + (3)NH, and (4)P + (2)NH(2) reaction paths to form the (1)PN molecule are only energetically favorable by taking place through specific transition states to form the (1)PN molecule. The NH(3) + (3)PH, (4)N + (1)PH(3), NH(3) + (4)P, and (4)N + (2)PH(2) reactions are spin-forbidden and the probability of hopping for these reactions was estimated to be 0 by the Landau-Zener theory. This is the first detailed study on the chemical mechanism for the (1)PN formation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural, energetic, and vibrational properties of new molecular species, HSeF and HFSe, the associated transition state, and dissociation fragments are investigated using a state-of-the-art theoretical approach, CCSD(T)/CBS. HSeF is a normal covalently bonded molecule 38.98 kcal mol (1) more stable than the complex HF-Se, which shows an unusual structure with a central fluorine atom and a bond angle of 101.8 degrees.A barrier (Delta G(#)) of 49.01 kcal mol (1) separates the two species. Vibrational frequencies are also quite distinct. Heats of formation are evaluated for the diatomic fragments and HSeF. Final Delta(f)H values depend on the experimental accuracy of those of Se(g) and H(2)Se. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cooks kinetic method has been very convenient to correlate the relative dissociation rates obtained by collision-induced fragmentation experiments with the energies of two related bonds in molecules and complexes in the gas phase. Reliable bond energy data are, however, not always available, particularly for polynuclear transition-metal complexes, such as the triruthenium acetate clusters of the general formula [Ru(3) (mu(3)-O)(mu-CH(3)COO)(6)(py)(2)(L)](+), where L = ring substituted N-heterocyclic ligands. Accordingly, their gas-phase collision-induced tandem mass spectrometry (CID MS/MS) dissociation patterns have been analyzed pursuing a relationship with the more easily accessible redox potentials (E(1/2)) and Lever`s E(L) parameters. In fact, excellent linear correlations of In(1/2A(L)/A(py)), where A(py) and A(L) are the abundance of the fragments retaining the pyridine (py) and L ligand, respectively, with E(1/2) and E(L) were found. This result shows that those electrochemical parameters are correlated with bond energies and can be used in the analysis of the dissociation data. Such modified Cooks method can be used, for example, to determine the electronic effects of substituents on the metal-ligand bonds for a series of transition-metal complexes. Copyright (C) 2008 John Wiley & Sons, Ltd.