5 resultados para diffusion-reaction
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The goal of this paper is to present an approximation scheme for a reaction-diffusion equation with finite delay, which has been used as a model to study the evolution of a population with density distribution u, in such a way that the resulting finite dimensional ordinary differential system contains the same asymptotic dynamics as the reaction-diffusion equation.
Resumo:
We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Back-scattered imaging, X-ray element mapping and electron microprobe analyzer (EMPA) chemical dating reveal complex compositional and age zoning in monazite crystals from different layers and textural positions in a garnet-bearing migmatite in SE Brazil. Y-rich (variable Y(2)O(3), averaging 2.5 wt.%) relict cores are preserved in mesosome and melanosome monazite, and correspond to 793 +/- 6 Ma inherited crystals possibly generated in a previous metamorphic event. These cores are overgrown and widely replaced by two generations of monazite, which are present in all migmatite layers. The first, also Y-rich (average 2.5 wt.% Y(2)O(3)), was produced at similar to 635 Ma during prograde metamorphism under subsolidus conditions, while the second has an Y-poor (<1.5 wt.% Y(2)O(3)), low Th/U signature, and precipitated from low Y and HREE anatectic melts produced by reactions in which garnet was inert. Quartz-rich trondhjemitic leucosome represents lower temperature melt (bearing some subsolidus quartz and garnet with included monazite) formed at temperatures below muscovite breakdown; its Y-poor monazite indicates an age of 617 +/- 6 Ma. Granitic leucosomes formed close to peak metamorphic conditions (T>750 degrees C) above muscovite breakdown have their slightly younger character confirmed by a 609 +/- 7 Ma low-Y monazite age. A similar 606 +/- 5 Ma age was obtained for low-Y monazite rims and domains in mesosome and melanosome, and reflects the time of monazite saturation in interstitial granitic melt that was trapped in these layers. Our results confirm that inherited monazite crystals can be preserved during partial melting at temperatures above muscovite breakdown. Moreover, careful textural control aided by X-ray chemical mapping may allow monazite generated at different stages in a similar to 25 Myr prograde metamorphic path to be identified and dated using an electron microprobe. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Diacetyl, like other alpha-dicarbonyl compounds, is reportedly cytotoxic and genotoxic. A food and cigarette contaminant, it is related with alcohol hepatotoxicity and lung disease. Peroxynitrite is a potent oxidant formed in vivo by the diffusion-controlled reaction of the superoxide radical anion with nitric oxide, which is able to form adducts with carbon dioxide and carbonyl compounds. Here, we investigate the nucleophilic addition of peroxynitrite to diacetyl forming acetyl radicals, whose reaction with molecular oxygen leads to acetate. Peroxynitrite is shown to react with diacetyl in phosphate buffer (bell-shaped pH profile with maximum at 7.2) at a very high rate constant (k(2) = 1.0 X 10(4) M-1 s(-1)) when compared with monocarbonyl substrates (k(2) < 10(3) M-1 s(-1)). Phosphate ions (100-500 MM) do not affect the rate of spontaneous peroxynitrite decay, but the H2PO4- anion catalyzes the nucleophilic addition of the peroxynitrite anion to diacetyl. The intermediacy of acetyl radicals is suggested by a three-line spectrum (a(N) = a(H) = 0.83 mT) obtained by EPR spin trapping of the reaction mixture with 2-methyl-2-nitrosopropane. The peroxynitrite reaction is accompanied by concentration-dependent oxygen uptake. Stoichiometric amounts of acetate from millimolar amounts of peroxynitrite and diacetyl were obtained under nonlimiting conditions of dissolved oxygen. In the presence of either L-histidine or 2`-deoxyguanosine, the peroxynitrite/diacetyl system afforded the corresponding acetylated molecules identified by HPLC-MS"". These studies provide evidence that the peroxynitrite/diacetyl reaction yields acetyl radicals and raise the hypothesis that protein and DNA nonenzymatic acetylation may occur in cells and be implicated in aging and metabolic disorders in which oxygen and nitrogen reactive species are putatively involved.
Ethanol oxidation reaction on PtCeO(2)/C electrocatalysts prepared by the polymeric precursor method
Resumo:
This paper presents a study of the electrocatalysis of ethanol oxidation reactions in an acidic medium on Pt-CeO(2)/C (20 wt.% of Pt-CeO(2) on carbon XC-72R), prepared in different mass ratios by the polymeric precursor method. The mass ratios between Pt and CeO(2) (3:1, 2:1, 1:1, 1:2, 1:3) were confirmed by Energy Dispersive X-ray Analysis (EDAX). X-ray diffraction (XRD) structural characterization data shows that the Pt-CeO(2)/C catalysts are composed of nanosized polycrystalline non-alloyed deposits, from which reflections corresponding to the fcc (Pt) and fluorite (CeO(2)) structures were clearly observed. The mean crystallite sizes calculated from XRD data revealed that, independent of the mass ratio, a value close to 3 nm was obtained for the CeO(2) particles. For Pt, the mean crystallite sizes were dependent on the ratio of this metal in the catalysts. Low platinum ratios resulted in small crystallites. and high Pt proportions resulted in larger crystallites. The size distributions of the catalysts particles, determined by XRD, were confirmed by Transmission Electron Microscope (TEM) imaging. Cyclic voltammetry and chronoamperometic experiments were used to evaluate the electrocatalytic performance of the different materials. In all cases, except Pt-CeO(2)/C 1:1, the Pt-Ceo(2)/C catalysts exhibited improved performance when compared with Pt/C. The best result was obtained for the Pt-CeO(2)/C 1:3 catalyst, which gave better results than the Pt-Ru/C (Etek) catalyst. (C) 2009 Elsevier B.V. All rights reserved.