314 resultados para difficile toxin activity
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Morphogenesis and cytodifferentiation are distinct processes in tooth development. Cell proliferation predominates in morphogenesis; differentiation involves changes in form and gene expression. The cytoskeleton is essential for both processes, being regulated by Rho GTPases. The aim of this study was to verify the expression, distribution, and role of Rho GTPases in ameloblasts and odontoblasts during tooth development in correlation with actin and tubulin arrangements and amelogenin and dentin sialophosphoprotein (DSPP) expression. RhoA, Rac1, and Cdc42 were strongly expressed during morphogenesis; during cytodifferentiation, RhoA was present in ameloblasts and odontoblasts, Rac1 and its effector Pak3 were observed in ameloblasts; and Cdc42 was present in all cells of the tooth germ and mesenchyme. The expression of RhoA mRNA and its effectors RockI and RockII, Rac1 and Pak3, as analyzed by real-time polymerase chain reaction, increased after ameloblast and odontoblast differentiation, according to the mRNA expression of amelogenin and DSPP. The inhibition of all Rho GTPases by Clostridium difficile toxin A completely abolished amelogenin and DSPP expression in tooth germs cultured in anterior eye chamber, whereas the specific inhibition of the Rocks showed only a partial effect. Thus, both GTPases are important during tooth morphogenesis. During cytodifferentiation, Rho proteins are essential for the complete differentiation of ameloblasts and odontoblasts by regulating the expression of amelogenin and DSPP. RhoA and its effector RockI contribute to this role. A specific function for Rac1 in ameloblasts remains to be elucidated; its punctate distribution indicates its possible role in exocytosis/endocytosis.
Resumo:
Aggregatibacter actinomycetemcomitans is an important etiologic agent of the periodontitis and is associated with extra-oral infections. In this study, the detection of the ltxA gene as well as the ltx promoter region from leukotoxic A. actinomycetemcomitans isolated from 50 Brazilian patients with periodontitis and 50 healthy subjects was performed. The leukotoxic activity on HL-60 cells was also evaluated. Leukotoxic activity was determined using a trypan blue exclusion method. The 530 bp deletion in the promoter region was evaluated by PCR using a PRO primer pair. A. actinomycetemcomitans was detected by culture and directly from crude subgingival biofilm by PCR using specific primers. By culture, A. actinomycetemcomitans was detected in nine (18%) of the periodontal patients and one (2%) healthy subject. However, by PCR, this organism was detected in 44% of the periodontal patients and in 16% of the healthy subjects. It was verified a great discrepancy between PCR detection of the ltx operon promoter directly from crude subgingival biofilm and from bacterial DNA. Only one periodontal sample harbored highly leukotoxic A. actinomycetemcomitans. Moreover, biotype II was the most prevalent and no correlation between biotypes and leukotoxic activity was observed. The diversity of leukotoxin expression by A. actinomycetemcomitans suggests a role of this toxin in the pathogenesis of periodontal disease and other infectious diseases.
Resumo:
Background: Since successful treatment of superficial bladder cancer with BCG requires proper induction of Th1 immunity, we have developed a rBCG-S1PT strain that induced a stronger cellular immune response than BCG. This preclinical study was designed to compare the modulatory effects of BCG and rBCG-S1PT on bladder TNF-alpha and IL-10 expression and to evaluate antitumour activity. Methods: For Experiment I, the MB49 bladder cancer cell line was used in C57BL/6 mice. Chemical cauterization of the bladder was performed to promote intravesical tumor implantation. Mice were treated by intravesical instillation with BCG, rBCG-S1PT or PBS once a week for four weeks. After 35 days the bladders were removed and weighed. TNF-
Resumo:
BACKGROUND: Purification of a-toxin produced by Clostridium perfringens type A in aqueous two-phase systems (ATPS) was studied with a full two-level factorial design on two factors (concentrations of 8000 g mol(-1) PEG and phosphate salt at pH 8.0), to estimate the influence of these factors on the purification results. RESULTS: The partition coefficient (K), purification factor (PF) and activity yield (Y) were strongly influenced by the PEG and phosphate concentrations. Raising the levels of the two factors increased these responses. The highest purification factor (5.7) was obtained with PEG and phosphate concentrations of 17.5% and 15%, respectively. CONCLUSION: These results support the proposal that polymer excluded volume and hydrophobic interactions are the factors that drive the alpha-toxin in PEG/phosphate aqueous two-phase systems. (c) 2008 Society of Chemical Industry
Resumo:
Infections caused by Corynebacterium diphtheriae frequently induce situations in which very small doses of antigens injected intradermally can cause strong inflammatory reactions. This bacterium secretes the diphtheria toxin (DT), a virulence factor that can be lethal to the human organism at doses below 0.1 mu g/kg of body weight. The present work proposes alternative methods of DT purification using affinity chromatography and of DT detoxification through conjugating with the polymer methoxypolyethylene glycol activated (mPEG). Tests were performed to evaluate: the formation of edemas and the presence of dermonecrotic activity, in vitro cytotoxicity to Vero cells, the neutralizing activity of serum from guinea pigs immunized with the diphtheria toxoid inactivated with mPEG, and the immunogenic activity of the purified and modified toxin. The results indicated that purification with Blue Sepharose was an efficient method, yielding antigen purity equivalent to 2600 Lf/mg of protein nitrogen. The modification of the Purified Toxin with mPEG did not result in the formation of edema or necrosis although it was immunogenic and stimulated the formation of antibodies that could neutralize the Purified Toxin. The toxoid obtained from the purified toxin maintained its immunogenic characteristics, inducing antibodies with neutralizing activity; edema and necrosis were still observed, however. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A thrombin-like enzyme, named BjussuSP-I, isolated from Bothrops jararacussu snake venom, is an acidic single-chain glycoprotein with M-r = 61,000, pI similar to 3.8 and 6% sugar. BjussuSP-I shows high proteolytic activity upon synthetic substrates, such as S-2238 and S-2288. It also shows procoagulant and kallikrein-like activity, but is unable to act on platelets and plasmin. These activities are inhibited by specific inhibitors of this class of enzymes. The complete cDNA sequence of BjussuSP-I with 696 bp encodes open reading frames of 232 amino acid residues, which conserve the common domains of thrombin-like serine proteases. BjussuSP-I shows a high structural homology with other thrombin-like enzymes from snake venoms where common amino acid residues are identified as those corresponding to the catalytic site and subsites S1, S2 and S3 already reported. In this study, we also demonstrated the importance of N-linked glycans, to improve thrombin-like activity of BjussuSP-I toxin. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Photodynamic therapy involves administration of a photosensitizing drug and its subsequent activation by visible light of the appropriate wavelength. Several approaches to increasing the specificity of photosensitizers for cancerous tissues and, in particular, through their conjugation to ligands that are directed against tumor-associated antigens have been investigated. Here, we have studied the delivery of the photocytotoxic porphyrin compound TPP(p-O-beta-D-GluOH)(3) into tumor cells that overexpress the glycosphingolipid Gb3, using the Gb3-binding nontoxic B-subunit of Shiga toxin (STxB) as a vector. To allow for site-directed chemical coupling, an STxB variant carrying a free sulfhydryl moiety at its C-terminal end has been used. Binding affinity, cellular uptake, singlet oxygen quantum yield, and phototoxicity of the conjugate have been examined. Despite some effect of coupling on both the photophysical properties of TPP(p-O-beta-D-GluOH)(3) and the affinity of STxB for its receptor, the conjugate exhibited a higher photocytotoxic activity than the photosensitizer alone and was exquisitely selective for Gb3-expressing tumor cells. Furthermore, our data strongly suggest that STxB-mediated retrograde delivery of the photosensitizer to the biosynthetic/secretory pathway is critical for optimal cytotoxic activity. In conclusion, a strong rationale for using retrograde delivery tools such as STxB in combination with photosensitizing agents for the photodynamic therapy of tumors is presented.
Resumo:
The peptides Tx2-5 and Tx2-6, isolated from the whole venom of ""armed-spider"" Phoneutria nigniventer venom, are directly linked with the induction of persistent and painful erection in the penis of mammals. The erection induced by Tx2-6 has been associated with the activation of nitric oxide synthases. There is a scarcity of studies focusing on the outcome of Tx2-6 at the molecular level, by this reason we evaluated the gene profile activity of this toxin at the nitric oxide (NO) pathway. After microarray analyses on cavernous tissue of mice inoculated with Tx2-6 we found that only 10.4% (10/96) of these genes were differentially expressed, showing a limited effect of the toxin on the NO pathway. We found the genes sparc, ednrb, junb, cdkn1a, bcl2, ccl5, abcc1 over-expressed and the genes sod1, s100a10 and fth1 under-expressed after inoculation of Tx2-6. The differential expressions of sparc and ednrb genes were further confirmed using real-time PCR. Interestingly, ednrb activates the L-arginine/NO/cGMP pathway that is involved in the relaxation of the cavernous body. Therefore the priapism induced by Tx2-6 is a consequence of a highly specific interference of this neurotoxin with the NO pathway. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We have previously isolated a Lys49 phospholipase A(2) homolog (BaTX) from Bothrops alternatus snake venom using a combination of molecular exclusion chromatography and reverse phase HPLC and shown its ability to cause neuromuscular blockade. In this work, we describe a one-step procedure for the purification of this toxin and provide further details of its neuromuscular activity. The toxin was purified by reverse phase HPLC and its purity and molecular mass were confirmed by SIDS-PAGE, MALDI-TOF mass spectrometry, amino acid analysis and N-terminal sequencing. BaTX (0.007-1.4 mu M) produced time-dependent, irreversible neuromuscular blockade in isolated mouse phrenic nerve-diaphragm and chick biventer cervicis preparations (time to 50% blockade with 0.35 mu M toxin: 58 +/- 4 and 24 +/- 1 min, respectively; n = 3-8; mean +/- S.E.) without significantly affecting the response to direct muscle stimulation. In chick preparations, contractures to exogenous acetylcholine (55 and 110 mu M) or KCl (13.4 mM) were unaltered after complete blockade by all toxin concentrations. These results, which strongly suggested a presynaptic mechanism of action for this toxin, were reinforced by (1) the inability of BaTX to interfere with the carbachol-induced depolarization of the resting membrane, (2) a significant decrease in the frequency and amplitude of miniature end-plate potentials, and (3) a significant reduction (59 +/- 4%, n=12) in the quantal content of the end-plate potentials after a 60 min incubation with the toxin (1.4 mu M). In addition, a decrease in the organ bath temperature from 37 degrees C to 24 degrees C and/or the replacement of calcium with strontium prevented the neuromuscular blockade, indicating a temperature-dependent effect possibly mediated by enzymatic activity. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Introduction: Cytolethal distending toxin (CDT) is a DNA-targeting agent produced by certain pathogenic gram-negative bacteria such as the periodontopathogenic organism Aggregatibacter actinomycetemcomitans. CDT targets lymphocytes and other cells causing cell cycle arrest and apoptosis, impairing the host immune response and contributing to the persistence of infections caused by this microorganism. In this study we explored the effects of CDT on the innate immune response, by investigating how it affects production of nitric oxide (NO) by macrophages. Methods: Murine peritoneal macrophages were stimulated with Escherichia coli sonicates and NO production was measured in the presence or not of active CDT. Results: We observed that CDT promptly and significantly inhibited NO production by inducible nitric oxide synthase (iNOS) in a dose-dependent manner. This inhibition is directed towards interferon-gamma-dependent pathways and is not mediated by either interleukin-4 or interleukin-10. Conclusion: This mechanism may constitute an important aspect of the immunosuppression mediated by CDT and may have potential clinical implications in A. actinomycetemcomitans infections.
Resumo:
The presence, development and production of mycotoxins by Aspergillus flavus and Fusarium verticillioides were studied in corn ears under field conditions after artificial contamination of corn silks. The planted area was divided into five treatments: T1, inoculated with A.flavus solution containing 1 x 10(8) spores, ears covered; T2, inoculated with F. verticillioides solution containing 1 X 10(8) spores, ears covered; T3, inoculated with E verticillioides plus A. flavus solution containing 1 x 10(8) spores of each, ears covered; T4, sprayed with sterile phosphate-buffered saline, ears covered; TS, non-sprayed silks, uncovered ears. Soil and air samples were also collected and analysed for the occurrence of fungi. Water activity, relative air humidity, rainfall and temperature were determined to assess the correlation between abiotic factors and the presence of fungi in the samples. Contamination with the inoculated fungus predominated in T1 and T2. In the other treatments, F. verticillioides was the most frequently isolated contaminant irrespective of treatment. Considering the production of mycotoxins, a positive relation between the production of fumonisins B-1 and B-2 and the frequency of F. verticillioides was statistically verified in all treatments. (C) 2007 Society of Chemical Industry.
Resumo:
Background and Objective: Cytolethal distending toxin (CDT) is a genotoxin produced by Aggregatibacter actinomycetemcomitans. In spite of its association with pathogenesis, little is known about the humoral immune response against the CDT. This study aimed to test whether subgingival colonization and humoral response to A. actinomycetemcomitans would lead to a response against CDT. Material and Methods: Sera from periodontally healthy, localized and generalized aggressive periodontitis and chronic periodontitis subjects (n = 80) were assessed for immunoglobulin G titers to A. actinomycetemcomitans serotypes a/b/c and to each CDT subunit (CdtA, CdtB and CdtC) by ELISA. A. actinomycetemcomitans subgingival levels and neutralization of CDT activity were also analyzed. Results: Sera from 75.0% localized and 81.8% generalized aggressive periodontitis patients reacted to A. actinomycetemcomitans. A response to serotype b was detected in localized (66.7%) and generalized aggressive periodontitis (54.5%). Reactivity to A. actinomycetemcomitans correlated with subgingival colonization (R = 0.75, p < 0.05). There was no correlation between A. actinomycetemcomitans colonization or response to serotypes and the immunoglobulin G response to CDT subunits. Titers of immunoglobulin G to CdtA and CdtB did not differ among groups; however, sera of all generalized aggressive periodontitis patients reacted to CdtC. Neutralization of CDT was not correlated with levels of antibodies to CDT subunits. Conclusion: Response to CdtA and CdtB did not correlate with the periodontal status of the subject in the context of an A. actinomycetemcomitans infection. However, a response to CdtC was found in sera of generalized but not of localized aggressive periodontitis subjects. Differences in response to CdtC between generalized and localized aggressive periodontitis subjects indicate that CDT could be expressed differently by the infecting strains. Alternatively, the antibody response to CdtC could require the colonization of multiple sites.
Resumo:
Introduction: Very little is known of the diversity and expression of virulence factors of serotypes of Aggregatibacter actinomycetemcomitans. Toxic activity on Chinese hamster ovary (CHO) cells and cdt and ltx genotyping were evaluated in A. actinomycetemcomitans serotypes. Methods: Forty-one A. actinomycetemcomitans isolates were analysed for CHO cell growth inhibition. Genotyping was performed by polymerase chain reactions specific to the ltx promoter region, serotype-specific and cdt region and by sequencing of cdtB. Results: cdtABC was detected in 40 strains. Analysis of the cdtA upstream region revealed 10 cdt genotypes. Toxicity to CHO cells was detected for 92.7% of the isolates; however, no correlation between the toxic activity and the cdt genotype was detected. Serotype c was more prevalent among Brazilian samples (68.0%). Four serotype b isolates from subjects with aggressive periodontitis were associated with high leukotoxin production and exhibited moderate to strong toxic activity in CHO cells, but were classified in different cdt genotypes. High levels of toxicity in CHO cells were not associated with a particular serotype; 57.1% of serotype a isolates presented low toxicity to CHO cells whereas the highly toxic strains belonged to serotypes b and c. Sequencing of cdtB revealed a single nucleotide polymorphism of amino acid 281 but this was not related to the toxic activity in CHO cells. Conclusion: Differences in prevalence of the low and highly cytotoxic strains among serotypes reinforce the hypothesis that serotype b and c isolates of A. actinomycetemcomitans are more virulent than serotype a strains.
Resumo:
Production of verocytotoxin or Shiga-like toxin (Stx), particularly Stx2, is the basis of hemolytic uremic syndrome, a frequently lethal outcome for subjects infected with Stx2-producing enterohemorrhagic Escherichia coli (EHEC) strains. The toxin is formed by a single A subunit, which promotes protein synthesis inhibition in eukaryotic cells, and five B subunits, which bind to globotriaosylceramide at the surface of host cells. Host enzymes cleave the A subunit into the A(1) peptide, endowed with N-glycosidase activity to the 28S rRNA, and the A(2) peptide, which confers stability to the B pentamer. We report the construction of a DNA vaccine (pStx2 Delta AB) that expresses a nontoxic Stx2 mutated form consisting of the last 32 amino acids of the A(2) sequence and the complete B subunit as two nonfused polypeptides. Immunization trials carried out with the DNA vaccine in BALB/c mice, alone or in combination with another DNA vaccine encoding granulocyte-macrophage colony-stimulating factor, resulted in systemic Stx-specific antibody responses targeting both A and B subunits of the native Stx2. Moreover, anti-Stx2 antibodies raised in mice immunized with pStx2 Delta AB showed toxin neutralization activity in vitro and, more importantly, conferred partial protection to Stx2 challenge in vivo. The present vector represents the second DNA vaccine so far reported to induce protective immunity to Stx2 and may contribute, either alone or in combination with other procedures, to the development of prophylactic or therapeutic interventions aiming to ameliorate EHEC infection-associated sequelae.
Resumo:
Heat-labile toxins (LT) encompass at least 16 natural polymorphic toxin variants expressed by wild-type enterotoxigenic Escherichia coli (ETEC) strains isolated from human beings, but only one specific form, produced by the reference ETEC H10407 strain (LT1), has been intensively studied either as a virulence-associated factor or as a mucosal/transcutaneous adjuvant. In the present study, we carried out a biological/immunological characterization of a natural LT variant (LT2) with four polymorphic sites at the A subunit (S190L, G196D, K213E, and S224T) and one at the B subunit (T75A). The results indicated that purified LT2, in comparison with LT1, displayed similar in vitro toxic activities (adenosine 3`,5`-cyclic monophosphate accumulation) on mammalian cells and in vivo immunogenicity following delivery via the oral route. Nonetheless, the LT2 variant showed increased adjuvant action to ovalbumin when delivered to mice via the transcutaneous route while antibodies raised in mice immunized with LT2 displayed enhanced affinity and neutralization activity to LT1 and LT2. Taken together, the results indicate that the two most frequent LT polymorphic forms expressed by wild ETEC strains share similar biological features, but differ with regard to their immunological properties.