3 resultados para diamondback terrapin
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A proteinase, named BmooMP alpha-I, from the venom of Bothrops moojeni, was purified by DEAE-Sephacel, Sephadex G-75 and heparin-agarose column chromatography. The enzyme was purified to homogeneity as judged by its migration profile in SDS-PAGE stained with coomassie blue, and showed a molecular mass of about 24.5 kDa. Its complete cDNA was obtained by RT-PCR and the 615 bp codified for a mature protein of 205 amino acid residues. The multiple alignment of its deduced amino acid sequence and those of other snake venom metalloproteinases showed a high structural similarly, mainly among class P-IB proteases. The enzyme cleaves the A alpha-chain of fibrinogen first, followed by the B beta-chain, and shows no effects on the gamma-chain. On fibrin, the enzyme hydrolyzed only the beta-chain, leaving the gamma-dimer apparently untouched. It was devoid of phospholipase A(2), hemorrhagic and thrombin-like activities. Like many venom enzymes, it is stable at pH values between 4 and 10 and stable at 70 degrees C for 15 min. The inhibitory effects of EDTA on the fibrinogenolytic activity suggest that BmooMP alpha-I is a metalloproteinase and inhibition by beta-mercaptoethanol revealed the important role of the disulfide bonds in the stabilization of the native structure. Aprotinin and benzamidine, specific serine proteinase inhibitors, had no effect on BmooMP alpha-I activity. Since the BmooMP alpha-I enzyme was found to cause defibrinogenation when administered i.p. on mice, it is expected that it may be of medical interest as a therapeutic agent in the treatment and prevention of arterial thrombosis. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In the present study, a thrombin-like enzyme named BpSP-I was isolated from Bothrops pauloensis snake venom and its biochemical, enzymatic and pharmacological characteristics were determined. BpSP-I is a glycoprotein that contains both N-linked carbohydrates and sialic acid in its structure, with M(r) = 34,000 under reducing conditions and pI similar to 6.4. The N-terminal sequence of the enzyme (VIGGDECDINEHPFL) showed high similarity with other thrombin-like enzymes from snake venoms. BpSP-I showed high clotting activity upon bovine and human plasma and was inhibited by PMSF, benzamidine and leupeptin. Moreover, this enzyme showed stability when examined at different temperatures (-70 to 37 degrees C), pH values (3-9) or in the presence of divalent metal ions (Ca(2+), Mg(2+), Zn(2+) and Mn(2+)). BpSP-I showed high catalytic activity upon substrates, such as fibrinogen, TAME, S-2238 and S-2288. It also showed kallikrein-like activity, but was unable to act upon factor Xa and plasmin substrates. Indeed, the enzyme did not induce hemorrhage, myotoxicity or edema. Taken together, our data showed that BpSP-I is in fact a thrombin-like enzyme isoform isolated from Bothrops pauloensis snake venom. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Anticarsia gemmatalis) were the objectives of this study. Twelve aerobic and anaerobic isolates of proteolytic bacteria were obtained from the caterpillar gut in calcium caseinate agar. The number of colony forming units (CFUs) of proteolytic bacteria was higher when the bacteria were extracted from caterpillars reared on artificial diet rather than on soybean leaves (1.73 +/- 0.35 X 10(3) and 0.55 +/- 0.22 X 10(3) CFU/mg gut, respectively). The isolated bacteria were divided into five distinct groups, according to their polymerase chain reaction restriction fragment-length polymorphism profiles. After molecular analysis, biochemical tests and fatty acid profile determination, the bacteria were identified as Bacillus subtilis, Bacillus cereus, Enterococcus gallinarum, Enterococcus mundtii, and Staphylococcus xylosus. Bacterial proteolytic activity was assessed through in vitro colorimetric assays for (general) proteases, serine proteases, and cysteine proteases. The isolated bacteria were able of hydrolyzing all tested substrates, except Staphylococcus xylosus, which did not exhibit serine protease activity. This study provides support for the hypothesis that gut proteases from velvetbean caterpillar are not exclusively secreted by the insect cells but also by their symbiotic gut bacteria. The proteolytic activity from gut symbionts of the velvetbean caterpillar is suggestive of their potential role minimizing the potentially harmful consequences of protease inhibitors from some of this insect host plants, such as soybean, with implications for the management of this insect pest species.