4 resultados para diabetes mellitus type 2
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Antioxidants probably play an important role in the etiology of type 2 diabetes (DM2). This study evaluated the effects of supplementation with lipoic acid (LA) and alpha-tocopherol on the lipid profile and insulin sensitivity of DM2 patients. A randomized, double-blind, placebo-controlled trial involving 102 DM2 patients divided into four groups to receive daily supplementation for 4 months with: 600 mg LA (n = 26); 800 mg alpha-tocopherol (n = 25); 800 mg alpha-tocopherol + 600 mg LA (n = 25); placebo (n = 26). Plasma alpha-tocopherol, lipid profile, glucose, insulin, and the HOMA index were determined before and after supplementation. Differences within and between groups were compared by ANOVA using Bonferroni correction. Student`s t-test was used to compare means of two independent variables. The vitamin E/total cholesterol ratio improved significantly in patients supplemented with vitamin E + LA and vitamin E alone (p <= 0.001). There were improvements of the lipid fractions in the groups receiving LA and vitamin E alone or in combination, and on the HOMA index in the LA group, but not significant. The results suggest that LA and vitamin E supplementation alone or in combination did not affect the lipid profile or insulin sensitivity of DM2 patients. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Aim: The objective of this study is to assess the contribution of ADIPOQ variants to type 2 diabetes in Japanese Brazilians. Methods: We genotyped 200 patients with diabetes mellitus (100 male and 100 female, aged 55.0 years [47.5-64.0 years]) and 200 control subjects with normal glucose tolerant (NGT) (72 male and 128 female, aged 52.0 years [43.5-64.5 years]). Results: Whereas each polymorphism studied (T45G, G276T, and A349G) was not significantly associated with type 2 diabetes mellitus, the haplotype GGA was overrepresented in our diabetic population (9.3% against 3.1% in NGT individuals, P=.0003). Also, this haplotype was associated with decreased levels of adiponectin. We also identified three mutations in exon 3: I164T, R221S, and H241P, but, owing to the low frequencies of them, associations with type 2 diabetes could not be evaluated. The subjects carrying the R221S mutation had plasma adiponectin levels lower than those without the mutation (2.10 mu g/ml [1.35-2.55 mu g/ml] vs. 6.68 mu g/ml [3.90-11.23 mu g/ml], P=.015). Similarly, the I164T mutation carriers had mean plasma adiponectin levels lower than those noncarriers (3.73 mu g/ml [3.10-4.35 mu g/ml] vs. 6.68 mu g/ml [3.90-11.23 mu g/ml]), but this difference was not significant (P=.17). Conclusions: We identified in the ADIPOQ gene a risk haplotype for type 2 diabetes in the Japanese Brazilian population. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Background: Microalbuminuria in Type 2 diabetes is associated with arterial endothelial dysfunction, but the venous bed was never evaluated. Aim: To study the endothelial function in the venous and arterial bed in patients with Type 2 diabetes with normoalbuminuria or microalbuminuria. Material and methods: We evaluated 28 patients with Type 2 diabetes, glycated hemoglobin (Hbak(1c)) <7.5%, who were classified as normo- (albuminuria <30 mg/24 h; no.=16) or microalbuminuric (albuminuria 30-300 mg/24 h; no.=12). Venous and arterial endothelial function were assessed by the dorsal hand vein technique (venodilation by acetylcholine) and brachial artery flow-mediated vasodilation, respectively. Results: Patients were normotensive (systolic arterial pressure: 131.1 +/- 10.6 mmHg) and on good metabolic control (HbA(1c): 6.6 +/- 0.6%). Microalbuminuric patients presented impaired venous (32.9 +/- 17.4 vs 59.3 +/- 26.5%; p=0.004) and arterial vasodilation (1.8 +/- 0.9 vs 5.1 +/- 2.4; p<0.001), as compared to normoalbuminuric patients. There was a negative correlation between acetylcholine-induced venodilation and albuminuria (r=-0.62; p<0.001) and HbA(1c) (r=-0.41; p=0.032). The same was observed between flow-mediated arterial vasodilation and albuminuria (r=-0.49; p=0.007) and HbA(1c) (r=-0.44; p=0.019). Venous and arterial vasodilation was positively correlated (r=0.50; p=0.007). Conclusions: Both venous and arterial endothelial function are impaired in Type 2 microalbuminuric diabetics, in spite of good metabolic control, suggesting that other factors are involved in its pathogenesis. (J. Endocrinol. Invest. 33: 696-700, 2010) (C) 2010, Editrice Kurtis
Resumo:
Background. Microencapsulation of pancreatic islets with polymeric compounds constitutes an attractive alternative therapy for type 1 diabetes mellitus. The major limiting factor is the availability of a biocompatible and mechanically stable polymer. We investigated the potential of Biodritin, a novel polymer constituted of alginate and chondroitin sulfate, for islet microencapsulation. Methods. Biodritin microcapsules were obtained using an air jet droplet generator and gelated with barium or calcium chloride. Microencapsulated rat insulinoma RINm5F cells were tested for viability using the [3-(4,5-dimetyl-thiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide] [MTT] colorimetric assay. Microencapsulated rat pancreatic islets were coincubated with macrophages derived from mouse peritoneal liquid to assess the immunomodulatory potential of the microcapsules, using quantitative real time-PCR (qPCR). Biodritin biocompatibility was demonstrated by subcutaneous injection of empty microcapsules into immunocompetent Wistar rats. Insulin secretion by microencapsulated human pancreatic islets was evaluated using an electrochemoluminescent assay. Microencapsulated human islets transplanted into chemically induced diabetic mice were monitored for reversal of hyperglycemia. Results. The metabolic activity of microencapsulated RINm5F cells persisted for at least 15 days. Interleukin-1 beta expression by macrophages was observed during coculture with islets microencapsulated with Biodritin-CaCl2, but not with Biodritin-BaCl2. No statistical difference in glucose-stimulated insulin secretion was observed between nonencapsulated and microencapsulated islets. Upon microencapsulated islet transplantation, the blood glucose level of diabetic mice normalized; they remained euglycemic for at least 60 days, displaying normal oral glucose tolerance tests. Conclusion. This study demonstrated that Biodritin can be used for islet microencapsulation and reversal of diabetes; however, further investigations are required to assess its potential for long-term transplantation.