6 resultados para delocalization

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic (UV-vis) and resonance Raman (RR) spectra of a series of para-substituted trans-beta-nitrostyrenes were investigated to determine the influence of the electron donating properties of the substituent (X = H, NO2, COOH, Cl, OCH3, OH, N(CH3)(2), and O-) on the extent of the charge transfer to the electron-withdrawing NO2 group directly linked to the ethylenic (C=C) unit. The Raman spectra and quantum chemical calculations show clearly the correlation of the electron donating power of the X group with the wavenumbers of the nu(s)(NO2) and nu (C=C)(sty) normal modes. In conditions of resonance with the lowest excited electronic state, one observes for X = OH and N(CH3)2 that the symmetric stretching of the NO2. nu(s)(NO2), is the most substantially enhanced mode, whereas for X = O-, the chromophore is extended over the whole molecule, with substantial enhancement of several carbon backbone modes. Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We focus this work on the theoretical investigation of the block-copolymer poly [oxyoctyleneoxy-(2,6-dimethoxy-1,4phenylene-1,2-ethinylene-phenanthrene-2,4diyl) named as LaPPS19, recently proposed for optoelectronic applications. We used for that a variety of methods, from molecular mechanics to quantum semiempirical techniques (AMI, ZINDO/S-CIS). Our results show that as expected isolated LaPPS19 chains present relevant electron localization over the phenanthrene group. We found, however, that LaPPS19 could assemble in a pi-stacked form, leading to impressive interchain interaction; the stacking induces electronic delocalization between neighbor chains and introduces new states below the phenanthrene-related absorption; these results allowed us to associate the red-shift of the absorption edge, seen in the experimental results, to spontaneous pi-stack aggregation of the chains. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 110: 885-892, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure and the vibrational spectrum of a potential drug for Chagas`s disease treatment, the (E)-isomer of phenylethenylbenzofuroxan 1 (5(6)(E)-[(2-phenylethenyl)]benzo[1,2-c]1,2,5-oxadiazole N-oxide), are reported. In order to provide insights into structural relationships, quantum mechanical calculations were employed starting from crystal structure. These results have given theoretical support to state interesting structural features, such as the effect of some intermolecular contacts on the molecule conformation and the electronic delocalization decreasing through atoms of the benzofuroxan moiety. Furthermore, the MOGUL comparative analysis in the Cambridge Structural Database provided additional evidences on these structural behaviors of compound 1. Intermolecular contacts interfere on the intramolecular geometry, as, for instance, on the phenyl group orientation, which is twisted by 12.32(6)A degrees from the ethenylbenzofuroxan plane. The experimental Raman spectrum of compound 1 presents unexpected frequency shift and also anomalous Raman activities. At last, the molecule skeleton deformation and the characteristic vibrational modes were correlated by matching the experimental Raman spectrum to the calculated one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dideprotonation of 4-(4-nitrophenylazo)resorcinol generates an anionic species with substantial electronic pi delocalization. As compared to the parent neutral species, the anionic first excited electronic transition, characterized as an intramolecular charge transfer (ICT) from the CO(-) groups to the NO(2) moiety, shows a drastic red shift of ca. 200 nm in the lambda(max) in the UV-vis spectrum, leading to one of the lowest ICT energies observed (lambda(max) = 630 nm in dimethyl sulfoxide (DMSO)) in this class of push-pull molecular systems. Concomitantly, a threefold increase in the molar absorptivity (epsilon(max)) in comparison to the neutral species is observed. The resonance Raman enhancement profiles reveal that in the neutral species the chromophore involves several modes, as nu(C-N), nu(N=N), nu(C=C) and nu(s)(NO(2)), whereas in the dianion, there is a selective enhancement of the NO(2) vibrational modes. The quantum chemical calculations of the electronic transitions and vibrational wavenumbers led to a consistent analysis of the enhancement patterns observed in the resonance Raman spectra. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vibrational spectroscopic characterization of a sulfur dioxide visual sensor was carried out using a Raman microscope system. It was observed the formation of two distinct complexes, that were characterized by the position and relative intensities of the bands assigned to the symmetric stretching, nu(s)(SO(2)),of the linked SO(2) molecules. In fact, in the yellowish orange complex, that corresponds to the 1:1 stoichiometry, only one band is observed, assigned to nu(s)(SO(2)) at ca. 1080 cm-(1) and, in the deep red complex, that corresponds to the 1:2 complex, at ca. 1070 and 1090 cm(-)1 are observed. The variation of the relative intensities of the bands assigned to nu(s)(SO(2)) present in the Ni(II)center dot SO(2) complex, in different points of the sample, shows clearly the requirement of the Raman microscope in the vibrational characterization of this kind of molecular sensor. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly delocalized molecular frameworks with intense charge transfer transitions, known as push-pull systems, are of central interest in many areas of chemistry, as is the case of nitrophenyl-triazene derivatives. The 1,3-bis(2-nitrophenyl)triazene and 1,3-bis(4-nitrophenyl)triazene were investigated by electronic (UV-Vis) and resonance Raman (RR) spectroscopies. The bichromophoric behavior of 1,3-bis(4-nitrophenyl)triazene anion opens the possibility of tuning with visible radiation, two distinct electronic states. The RR profiles of nitrophenyl-triazene derivatives clearly show that the first allowed electronic state can be assigned to a charge transfer from the ring pi system to the NO2 moiety (ca 520 nm), while the second, as a charge transfer from N-3(-) to the aromatic ring (ca 390 nm). In the para-substituted derivative, a more efficient electron transfer and a greater energy separation between the two excited states are observed. Copyright (C) 2008 John Wiley & Sons, Ltd.