518 resultados para deletion analysis

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have identified a globally important clonal complex of Mycobacterium bovis by deletion analysis of over one thousand strains from over 30 countries. We initially show that over 99% of the strains of M. bovis, the cause of bovine tuberculosis, isolated from cattle in the Republic of Ireland and the UK are closely related and are members of a single clonal complex marked by the deletion of chromosomal region RDEu1 and we named this clonal complex European 1 (Eu1). Eu1 strains were present at less than 14% of French, Portuguese and Spanish isolates of M. bovis but are rare in other mainland European countries and Iran. However, strains of the Eu1 clonal complex were found at high frequency in former trading partners of the UK (USA, South Africa, New Zealand, Australia and Canada). The Americas, with the exception of Brazil, are dominated by the Eu1 clonal complex which was at high frequency in Argentina, Chile, Ecuador and Mexico as well as North America. Eu1 was rare or absent in the African countries surveyed except South Africa. A small sample of strains from Taiwan were non-Eu1 but, surprisingly, isolates from Korea and Kazakhstan were members of the Eu1 clonal complex. The simplest explanation for much of the current distribution of the Eu1 clonal complex is that it was spread in infected cattle, such as Herefords, from the UK to former trading partners, although there is evidence of secondary dispersion since. This is the first identification of a globally dispersed clonal complex M. bovis and indicates that much of the current global distribution of this important veterinary pathogen has resulted from relatively recent International trade in cattle. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cell division in bacteria is carried out by an elaborate molecular machine composed of more than a dozen proteins and known as the divisome. Here we describe the characterization of a new divisome protein in Bacillus subtilis called YpsB. Sequence comparisons and phylogentic analysis demonstrated that YpsB is a paralog of the division site selection protein DivIVA. YpsB is present in several gram-positive bacteria and likely originated from the duplication of a DivIVA-like gene in the last common ancestor of bacteria of the orders Bacillales and Lactobacillales. We used green fluorescent protein microscopy to determine that YpsB localizes to the divisome. Similarly to that for DivIVA, the recruitment of YpsB to the divisome requires late division proteins and occurs significantly after Z-ring formation. In contrast to DivIVA, however, YpsB is not retained at the newly formed cell poles after septation. Deletion analysis suggests that the N terminus of YpsB is required to target the protein to the divisome. The high similarity between the N termini of YpsB and DivIVA suggests that the same region is involved in the targeting of DivIVA. YpsB is not essential for septum formation and does not appear to play a role in septum positioning. However, a ypsB deletion has a synthetic effect when combined with a mutation in the cell division gene ftsA. Thus, we conclude that YpsB is a novel B. subtilis cell division protein whose function has diverged from that of its paralog DivIVA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sotos syndrome (MIM #117550) is an autosomal dominant condition characterized by pre and postnatal overgrowth, macrocephaly and typical facial gestalt with frontal bossing, hypertelorism, antimongoloid slant of the palpebral fissures, prominent jaw and high and narrow palate. This syndrome is also frequently associated with brain, cardiovascular, and urinary anomalies and is occasionally accompanied by malignant lesions such as Wilms turnout and hepatocarcinoma. The syndrome is known to be caused by mutations or deletions of the NSD1 gene. To detect both 5q35 microdeletions and partial NSD1 gene deletions we screened 30 Brazilian patients with clinical diagnosis of Sotos syndrome by multiplex ligation dependent probe amplification. We identified one patient with a total deletion of NSD1 and neighbouring FGFR4, other with missing NSD1 exons 13-14 and another with a deletion involving FGFR4 and spanning up to NSD1 exon 17. All deletions were de novo. The two NSD1 partial deletions have not been previously reported. The clinical features of the three patients included a typical facial gestalt with frontal bossing, prominent jaw and high anterior hairline; macrocephaly, dolichocephaly, large hands; neonatal hypotonia and jaundice. All presented normal growth at birth but postnatal overgrowth. Two patients with NSD1 and FGFR4 gene deletions presented congenital heart anomalies. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cancer is one of the most common and severe problems in clinical medicine, and nervous system tumors represent about 2% of the types of cancer. The central role of the nervous system in the maintenance of vital activities and the functional consequences of the loss of neurons can explain how severe brain cancers are. The cell cycle is a highly complex process, with a wide number of regulatory proteins involved, and such proteins can suffer alterations that transform normal cells into malignant ones. The INK4 family members (CDK inhibitors) are the cell cycle regulators that block the progression of the cycle through the R point, causing an arrest in G1 stage. The p14ARF (alternative reading frame) gene is a tumor suppressor that inhibits p53 degradation during the progression of the cell cycle. The PTEN gene is related to the induction of growth suppression through cell cycle arrest, to apoptosis and to the inhibition of cell adhesion and migration. The purpose of the present study was to assess the mutational state of the genes p14ARF, p15INK4b, p16INK4a, and PTEN in 64 human nervous system tumor samples. Homozygous deletions were found in exon 2 of the p15INK4b gene and exon 3 of the p16INK4a gene in two schwannomas. Three samples showed a guanine deletion (63 codon) which led to a loss of heterozygosity in the p15 gene, and no alterations could be seen in the PTEN gene. Although the group of patients was heterogeneous, our results are in accordance with other different studies that indicate that homozygous deletion and loss of heterozygosity in the INK4 family members are frequently observed in nervous system tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To facilitate future diagnosis of Knobloch syndrome (KS) and better understand its etiology, we sought to identify not yet described COL18A1 mutations in KS patients. In addition, we tested whether mutations in this gene lead to absence of the COL18A1 gene product and attempted to better characterize the functional effect of a previously reported missense mutation. Methods: Direct sequencing of COL18A1 exons was performed in KS patients from four unrelated pedigrees. We used immunofluorescent histochemistry in skin biopsies to evaluate the presence of type XVIII collagen in four KS patients carrying two already described mutations: c. 3277C>T, a nonsense mutation, and c. 3601G>A, a missense mutation. Furthermore, we determined the binding properties of the mutated endostatin domain p.A1381T (c.3601G>A) to extracellular matrix proteins using ELISA and surface plasmon resonance assays. Results: We identified four novel mutations in COL18A1, including a large deletion involving exon 41. Skin biopsies from KS patients revealed lack of type XVIII collagen in epithelial basement membranes and blood vessels. We also found a reduced affinity of p.A1381T endostatin to some extracellular matrix components. Conclusions: COL18A1 mutations involved in Knobloch syndrome have a distribution bias toward the coding exons of the C-terminal end. Large deletions must also be considered when point mutations are not identified in patients with characteristic KS phenotype. We report, for the first time, lack of type XVIII collagen in KS patients by immunofluorescent histochemistry in skin biopsy samples. As a final point, we suggest the employment of this technique as a preliminary and complementary test for diagnosis of KS in cases when mutation screening either does not detect mutations or reveals mutations of uncertain effect, such as the p.A1381T change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial type III secretion systems deliver protein virulence factors to host cells. Here we characterize the interaction between HrpB2, a small protein secreted by the Xanthomonas citri subsp. citri type III secretion system, and the cytosolic domain of the inner membrane protein HrcU, a paralog of the flagellar protein FlhB. We show that a recombinant fragment corresponding to the C-terminal cytosolic domain of HrcU produced in E. coli suffers cleavage within a conserved Asn264-Pro265-Thr266-His267 (NPTH) sequence. A recombinant HrcU cytosolic domain with N264A, P265A, T266A mutations at the cleavage site (HrcU(AAAH)) was not cleaved and interacted with HrpB2. Furthermore, a polypeptide corresponding to the sequence following the NPTH cleavage site also interacted with HrpB2 indicating that the site for interaction is located after the NPTH site. Non-polar deletion mutants of the hrcU and hrpB2 genes resulted in a total loss of pathogenicity in susceptible citrus plants and disease symptoms could be recovered by expression of HrpB2 and HrcU from extrachromossomal plasmids. Complementation of the Delta hrcU mutant with HrcU(AAAH) produced canker lesions similar to those observed when complemented with wild-type HrcU. HrpB2 secretion however, was significantly reduced in the Delta hrcU mutant complemented with HrcU(AAAH), suggesting that an intact and cleavable NPTH site in HrcU is necessary for total functionally of T3SS in X. citri subsp. citri. Complementation of the Delta hrpB2 X. citri subsp. citri strain with a series of hrpB2 gene mutants revealed that the highly conserved HrpB2 C-terminus is essential for T3SS-dependent development of citrus canker symptoms in planta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcineurin plays an important role in the control of cell morphology and virulence in fungi. Calcineurin is a serine/threonine-specific protein phosphatase heterodimer consisting of a catalytic subunit A and a regulatory subunit B. A mutant of Aspergillus fumigatus lacking the calcineurin A (calA) catalytic subunit exhibited defective hyphal morphology related to apical extension and branching growth, which resulted in drastically decreased filamentation. Here, we investigated which pathways are influenced by A. fumigatus calcineurin during proliferation by comparatively determining the transcriptional profile of A. fumigatus wild type and Delta calA mutant strains. Our results showed that the mitochondrial copy number is reduced in the Delta calA mutant strain, and the mutant has increased alternative oxidase (aoxA) mRNA accumulation and activity. Furthermore, we identified four genes that encode transcription factors that have increased mRNA expression in the Delta calA mutant. Deletion mutants for these transcription factors had reduced susceptibility to itraconazole, caspofungin, and sodium dodecyl sulfate (SDS). (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been reported that microRNAs (miRNA) may have allele-specific targeting for the 3` untranslated region (3` UTR) of the HLA-G locus. In a previous study, we reported 11 3`UTR haplotypes encompassing the 14-bp insertion/deletion polymorphism and seven SNPs (+3003 T/C, +3010 C/G, +3027 C/A, +3035 C/T, +3142 C/G, +3187A/G,and +3196 C/G), of which only the +3142 C/G SNP has been reported to influence the binding of miRNAs. Using bioinformatics analyses, we identified putative miRNA-binding sites considering the haplotypes encompassing these eight polymorphic sites, and we ranked the lowest free energies that could potentially lead to an mRNA degradation or translational repression. When a specific haplotype or a particular SNP was associated with a miRNA-binding site, we defined a free energy difference of 4 kcal/mol between alleles to classify them energetically distant. The best results were obtained for the miR-513a-5p, miR-518c*, miR-1262 and miR-92a-1*, miR-92a-2*, miR-661, miR-1224-5p, and miR-433 miRNAs, all influencing one or more of the +3003, +3010, +3027, and +3035 SNPs. The miR-2110, miR-93, miR-508-5p, miR-331-5p, miR-616, miR-513b, and miR-589* miRNAs targeted the 14-bp fragment region, and miR-148a, miR-19a*, miR-152, mir-148b,and miR-218-2 also influenced the +3142C/G polymorphism. These results suggest that these miRNAs might play a relevant role on the HLA-G expression pattern. (C) 2009 Published by Elsevier Inc. on behalf of American Society for Histocompatibility and Immunogenetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a PCR multiplex was optimized, allowing the simultaneous analysis of 13 X-chromosome Insertion/deletion polymorphisms (INDELs). Genetic variation observed in Africans, Europeans, and Native Americans reveals high inter-population variability. The estimated proportions of X-chromosomes in an admixed population from the Brazilian Amazon region show a predominant Amerindian contribution (congruent to 41%), followed by European (congruent to 32%) and African (congruent to 27%) contributions. The proportion of Amerindian contribution based on X-linked data is similar to the expected value based on mtDNA and Y-chromosome information. The accuracy for assessing interethnic admixture, and the high differentiation between African, European, and Native American populations, demonstrates the suitability of this INDEL set to measure ancestry proportions in three-hybrid populations, as it is the case of Latin American populations. Am. J. Hum. Biol. 21:707-709, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Hereditary angioedema is an autosomal dominant disease characterized by episodes of subcutaneous and submucosal edema. It is caused by deficiency of the C1 inhibitor protein, leading to elevated levels of bradykinin. More than 200 mutations in C1 inhibitor gene have been reported. The aim of this study was to analyze clinical features of a large family with an index case of hereditary angioedema and to determine the disease-causing mutation in this family. Methods: Family pedigree was constructed with 275 individuals distributed in five generations. One hundred and sixty-five subjects were interviewed and investigated for mutation at the C1 inhibitor gene. Subjects reporting a history of recurrent episodes of angioedema and/or abdominal pain attacks underwent evaluation for hereditary angioedema. Results: We have identified a novel mutation at the C1 inhibitor gene, c.351delC, which is a single-nucleotide deletion of a cytosine on exon 3, resulting in frameshift with premature stop codon. Sequencing analysis of the hypothetical truncated C1 inhibitor protein allowed us to conclude that, if transcription occurs, this protein has no biological activity. Twenty-eight members of the family fulfilled diagnostic criteria for hereditary angioedema and all of them presented the c.351delC mutation. Variation in clinical presentation and severity of disease was observed among these patients. One hundred and thirty-seven subjects without hereditary angioedema did not have the c.351delC mutation. Conclusion: The present study provides definitive evidence to link a novel genetic mutation to the development of hereditary angioedema in patients from a Brazilian family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concurrent deletion at 1p/19q is a common signature of oligodendrogliomas, and it may, be identified in low-grade tumours (grade II) suggesting it represents an early event in the development of these brain neoplasms. Additional non-random changes primarily involve CDKN2A, PTEN and EGFR. Identification of all of these genetic changes has become an additional parameter in the evaluation of the clinical patients` prognosis, including good response to conventional chemotherapy. Multiple ligation-dependent probe amplification (MLPA) analysis is a new methodology that allows an easy identification of the oligodendrogliomas` abnormalities in a single step. No need of the respective constitutional DNA from each patient is another advantage of this method. We used MLPA kits P088 and P105 to determine the molecular characteristics of a series of 40 oligodendrogliomas. Deletions at I p and 19q were identified in 45% and 65% of cases, respectively. Alterations of EGFR, CDKN2A, ERBB2, PTEN and TP53 were also identified in variable frequencies among 7% to 35% of tumours. These findings demonstrate that MLPA is a reliable technique to the detection of molecular genetic changes in oligodendrogliomas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human leukocyte antigen-G (HLA-G) is a non-classical major histocompatibility complex (MHC) class Ib molecule predominantly expressed in cytotrophoblasts, where it acts as a specific immunosuppressor. Literature data have shown that grafts in some settings, such as cardiac and liver/kidney-associated transplantations, express HLA-G and this expression is associated with less severe rejection and also reduces the incidence of rejection. Fourteen-base pair deletion/insertion polymorphism has been reported in exon 8 of the 3`-untranslated region of HLA-G. This polymorphism within exon 8 of the HLA-G gene might influence transcription activity, which in turn may influence the stability of HLA-G transcripts. This influences the stability of the HLA-G protein and therefore is of potential functional relevance. In order to determine a possible correlation between the 14-bp insertion/deletion polymorphism and kidney allograft outcome, we isolated genomic DNA from 83 patients who had received isolated kidney allografts, and we classified the 83 specimens into two groups, grafts presenting Banff features of rejection group and a non-rejection group, and compared them with a control group of 97 healthy subjects. The 14-bp polymorphism at exon 8 was genotyped in all groups. There was no significant difference in allelic frequencies of 14-bp insertion/deletion polymorphism between normal controls and kidney transplant patients. In the RG, the homozygous genotype +14/+14 bp (P = 0.0238) was significantly increased in the group with acute rejection compared with the healthy control group. Analysis of other HLA-G polymorphisms and functional studies on immune regulation are essential to elucidate the role of HLA-G in kidney allografts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carpenter syndrome, a rare autosomal recessive disorder characterized by a combination of craniosynostosis, polysyndactyly, obesity, and other congenital malformations, is caused by mutations in RAB23, encoding a member of the Rab-family of small GTPases. In 15 out of 16 families previously reported, the disease was caused by homozygosity for truncating mutations, and currently only a single missense mutation has been identified in a compound heterozygote. Here, we describe a further 8 independent families comprising 10 affected individuals with Carpenter syndrome, who were positive for mutations in RAB23. We report the first homozygous missense mutation and in-frame deletion, highlighting key residues for RAB23 function, as well as the first splice-site mutation. Multi-suture craniosynostosis and polysyndactyly have been present in all patients described to date, and abnormal external genitalia have been universal in boys. High birth weight was not evident in the current group of patients, but further evidence for laterality defects is reported. No genotype-phenotype correlations are apparent. We provide experimental evidence that transcripts encoding truncating mutations are subject to nonsense-mediated decay, and that this plays an important role in the pathogenesis of many RAB23 mutations. These observations refine the phenotypic spectrum of Carpenter syndrome and offer new insights into molecular pathogenesis. (C) 2011 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genome of the most virulent among 22 Brazilian geographical isolates of Spodoptera frugiperda nucleopolyhedrovirus, isolate 19 (SfMNPV-1 9), was completely sequenced and shown to comprise 132 565 bp and 141 open reading frames (ORFs). A total of 11 ORFs with no homology to genes in the GenBank database were found. Of those, four had typical baculovirus; promoter motifs and polyadenylation sites. Computer-simulated restriction enzyme cleavage patterns of SfMNPV-1 9 were compared with published physical maps of other SfMNPV isolates. Differences were observed in terms of the restriction profiles and genome size. Comparison of SfMNPV-1 9 with the sequence of the SfMNPV isolate 3AP2 indicated that they differed due to a 1427 bp deletion, as well as by a series of smaller deletions and point mutations. The majority of genes of SfMNPV-1 9 were conserved in the closely related Spodoptera exigua NPV (SeMNPV) and Agrotis segetum NPV (AgseMNPV-A), but a few regions experienced major changes and rearrangements. Synthenic maps for the genomes of group 11 NPVs revealed that gene collinearity was observed only within certain clusters. Analysis of the dynamics of gene gain and loss along the phylogenetic tree of the NPVs showed that group 11 had only five defining genes and supported the hypothesis that these viruses form ten highly divergent ancient lineages. Crucially, more than 60% of the gene gain events followed a power-law relation to genetic distance among baculoviruses, indicative of temporal organization in the gene accretion process.