9 resultados para deficiencies
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Respiratory syncytial virus (RSV) bronchiolitis is the leading cause of lower respiratory tract infection, and the most frequent reason for hospitalization among infants throughout the world. In addition to the acute consequences of the disease, RSV bronchiolitis in early childhood is related to further development of recurrent wheezing and asthma. Despite the medical and economic burden of the disease, therapeutic options are limited to supportive measures, and mechanical ventilation in severe cases. Growing evidence suggests an important role of changes in pulmonary surfactant content and composition in the pathogenesis of severe RSV bronchiolitis. Besides the well-known importance of pulmonary surfactant in maintenance of pulmonary homeostasis and lung mechanics, the surfactant proteins SP-A and SP-D are essential components of the pulmonary innate immune system. Deficiencies of such proteins, which develop in severe RSV bronchiolitis, may be related to impairment in viral clearance, and exacerbated inflammatory response. A comprehensive understanding of the role of the pulmonary surfactant in the pathogenesis of the disease may help the development of new treatment strategies. We conducted a review of the literature to analyze the evidences of pulmonary surfactant changes in the pathogenesis of severe RSV bronchiolitis, its relation to the inflammatory and immune response, and the possible role of pulmonary surfactant replacement in the treatment of the disease. Pediatr Pulmonol. 2011; 46:415-420. (c) 2010 Wiley-Liss, Inc.
Resumo:
Regional Climate Model version 3 (RegCM3) simulations of 17 summers (1988-2004) over part of South America south of 5 degrees S were evaluated to identify model systematic errors. Model results were compared to different rainfall data sets (Climate Research Unit (CRU), Climate Prediction Center (CPC), Global Precipitation Climatology Project (GPCP), and National Centers for Environmental Prediction (NCEP) reanalysis), including the five summers mean (1998-2002) precipitation diurnal cycle observed by the Tropical Rainfall Measuring Mission (TRMM)-Precipitation Radar (PR). In spite of regional differences, the RegCM3 simulates the main observed aspects of summer climatology associated with the precipitation (northwest-southeast band of South Atlantic Convergence Zone (SACZ)) and air temperature (warmer air in the central part of the continent and colder in eastern Brazil and the Andes Mountains). At a regional scale, the main RegCM3 failures are the underestimation of the precipitation in the northern branch of the SACZ and some unrealistic intense precipitation around the Andes Mountains. However, the RegCM3 seasonal precipitation is closer to the fine-scale analyses (CPC, CRU, and TRMM-PR) than is the NCEP reanalysis, which presents an incorrect north-south orientation of SACZ and an overestimation of its intensity. The precipitation diurnal cycle observed by TRMM-PR shows pronounced contrasts between Tropics and Extratropics and land and ocean, where most of these features are simulated by RegCM3. The major similarities between the simulation and observation, especially the diurnal cycle phase, are found over the continental tropical and subtropical SACZ regions, which present afternoon maximum (1500-1800 UTC) and morning minimum (0900-1200 UTC). More specifically, over the core of SACZ, the phase and amplitude of the simulated precipitation diurnal cycle are very close to the TRMM-PR observations. Although there are amplitude differences, the RegCM3 simulates the observed nighttime rainfall in the eastern Andes Mountains, over the Atlantic Ocean, and also over northern Argentina. The main simulation deficiencies are found in the Atlantic Ocean and near the Andes Mountains. Over the Atlantic Ocean the convective scheme is not triggered; thus the rainfall arises from the grid-scale scheme and therefore differs from the TRMM-PR. Near the Andes, intense (nighttime and daytime) simulated precipitation could be a response of an incorrect circulation and topographic uplift. Finally, it is important to note that unlike most reported bias of global models, RegCM3 does not trigger the moist convection just after sunrise over the southern part of the Amazon.
Resumo:
Siderastrea stellata and S. radians are scleractinian coral species that present a remarkable overlap of diagnostic characteristics and sympatric distribution. Moreover, both are viviparous with similar reproductive strategies and with a gregarious larval behavior. Samples of both species from the Brazilian coast were analyzed using 18 isozymic loci to quantify their genetic variability and populational structure. Results confirmed species identity, high intrapopulational variability and revealed moderate genetic structuring among all samples (S. stellata: F(ST) = 0.070; S. radians: F(ST) = 0.092). Based on genotypic diversity analysis, there was evidence that local recruitment may have a minor role in the populations (mean, G(o) :G(e) = 1.00 +/- 0.0003 SD for S. stellata and 0.99 +/- 0.0023 SD for S. radians). Deviations towards heterozygote deficiencies found in both Siderastrea species could be explained by the Wahlund effect, since there was evidence that populations might be composed of colonies of different ages. In S. radians it is also likely that there is some inbreeding occurring in the studied populations. Despite the brooding pattern and the gregarious larval behavior, our data suggest the occurrence of gene flow along the Brazilian coast. This is the first study on population genetics of Brazilian reef corals.
Resumo:
Fukutin-related protein (FKRP) is a protein involved in the glycosylation of cell surface molecules. Pathogenic mutations in the FKRP gene cause both the more severe congenital muscular dystrophy Type 1C and the milder Limb-Girdle Type 21 form (LGMD21). Here we report muscle histological alterations and the analysis of 11 muscle proteins: dystrophin, four sarcoglycans, calpain 3, dysferlin, telethonin, collagen VI, alpha-DG, and alpha 2-laminin, in muscle biopsies from 13 unrelated LGMD21 patients with 10 different FKRP mutations. In all, a typical dystrophic pattern was observed. In eight patients, a high frequency of rimmed vacuoles was also found. A variable degree of alpha 2-laminin deficiency was detected in 12 patients through immunofluorescence analysis, and 10 patients presented a-DG deficiency on sarcolemmal membranes. Additionally, through Western blot analysis, deficiency of calpain 3 and dystrophin bands was found in four and two patients, respectively. All the remaining proteins showed a similar pattern to normal controls. These results suggest that, in our population of LGMD21 patients, different mutations in the FKRP gene are associated with several secondary muscle protein reductions, and the deficiencies of alpha 2-laminin and alpha-DG on sections are prevalent, independently of mutation type or clinical severity.
Resumo:
The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse, both presenting significant reduction of alpha 2-laminin in the muscle and a severe phenotype. The myodystrophy mouse (Large(myd)) harbors a mutation in the glycosyltransferase Large, which leads to altered glycosylation of alpha-DG, and also a severe phenotype. Other informative models for muscle proteins include the knockout mouse for myostatin, which demonstrated that this protein is a negative regulator of muscle growth. Additionally, the stress syndrome in pigs, caused by mutations in the porcine RYR1 gene, helped to localize the gene causing malignant hypertermia and Central Core myopathy in humans. The study of animal models for genetic diseases, in spite of the existence of differences in some phenotypes, can provide important clues to the understanding of the pathogenesis of these disorders and are also very valuable for testing strategies for therapeutic approaches.
Resumo:
Protein deficiency is one of the biggest public health problems in the world, accounting for about 30-40% of hospital admissions in developing countries. Nutritional deficiencies lead to alterations in the peripheral nervous system and in the digestive system. Most studies have focused on the effects of protein-deficient diets on the enteric neurons, but not on sympathetic ganglia, which supply extrinsic sympathetic input to the digestive system. Hence, in this study, we investigated whether a protein-restricted diet would affect the quantitative structure of rat coeliac ganglion neurons. Five male Wistar rats (undernourished group) were given a pre- and postnatal hypoproteinic diet receiving 5% casein, whereas the nourished group (n = 5) was fed with 20% casein (normoproteinic diet). Blood tests were carried out on the animals, e.g., glucose, leptin, and triglyceride plasma concentrations. The main structural findings in this study were that a protein-deficient diet (5% casein) caused coeliac ganglion (78%) and coeliac ganglion neurons (24%) to atrophy and led to neuron loss (63%). Therefore, the fall in the total number of coeliac ganglion neurons in protein-restricted rats contrasts strongly with no neuron losses previously described for the enteric neurons of animals subjected to similar protein-restriction diets. Discrepancies between our figures and the data for enteric neurons (using very similar protein-restriction protocols) may be attributable to the counting method used. In light of this, further systematic investigations comparing 2-D and 3-D quantitative methods are warranted to provide even more advanced data on the effects that a protein-deficient diet may exert on sympathetic neurons. (C) 2009 Wiley-Liss, Inc.
Resumo:
immunodeficiency (CVID), the most common symptomatic primary immunodeficiency in adulthood. Different authors report high prevalences of autoimmune diseases in CVID, and several mechanisms have been proposed to explain this apparent paradox. Genetic predisposition, under current surveillance, innate and adaptive immunity deficiencies leading to persistent/recurrent infections, variable degrees of immune dysregulation, and possible failure in central and peripheral mechanisms of tolerance induction or maintenance may all contribute to increased autoimmunity. Conclusions Data on the clinical/immunological profile of affected patients and treatment are available mostly concerning autoimmune cytopenias, the most common autoimmune diseases in CVID. Treatment is based on conventional alternatives, in association with short experience with new agents, including rituximab and infliximab. Benefits of early immunoglobulin substitutive treatment and hypothetical premature predictors of autoimmunity are discussed as potential improvements to CVID patients` follow-up.
Resumo:
Background: The relationship between CETP and postprandial hyperlipemia is still unclear. We verified the effects of varying activities of plasma CETP on postprandial lipemia and precocious atherosclerosis in asymptomatic adult women. Methods: Twenty-eight women, selected from a healthy population sample (n = 148) were classified according to three CETP levels, all statistically different: CETP deficiency (CETPd <= 4.5%, n = 8), high activity (CETPi >= 23.8, n = 6) and controls (CTL, CETP >= 4.6% and <= 23.7%, n = 14). After a 12 h fast they underwent an oral fat tolerance test (40 g of fat/m(2) of body surface area) for 8 hours. TG, TG-rich-lipoproteins (TRL), cholesterol and TRL-TG measurements (AUC, AUIC, AR, RR and late peaks) and comparisons were performed on all time points. Lipases and phospholipids transfer protein (PLTP) were determined. Correlation between carotid atherosclerosis (c-IMT) and postprandial parameters was determined. CETP TaqIB and I405V and ApoE-epsilon 3/epsilon 2/epsilon 4 polymorphisms were examined. To elucidate the regulation of increased lipemia in CETPd a multiple linear regression analysis was performed. Results: In the CETPi and CTL groups, CETP activity was respectively 9 and 5.3 higher compared to the CETPd group. Concentrations of all HDL fractions and ApoA-I were higher in the CETPd group and clearance was delayed, as demonstrated by modified lipemia parameters (AUC, AUIC, RR, AR and late peaks and meal response patterns). LPL or HL deficiencies were not observed. No genetic determinants of CETP deficiency or of postprandial lipemia were found. Correlations with c-IMT in the CETPd group indicated postprandial pro-atherogenic associations. In CETPd the regression multivariate analysis (model A) showed that CETP was largely and negatively predicted by VLDL-C lipemia (R(2) = 92%) and much less by TG, LDL-C, ApoAI, phospholipids and non-HDL-C. CETP (model B) influenced mainly the increment in ApoB-100 containing lipoproteins (R(2) = 85% negatively) and phospholipids (R(2) = 13%), at the 6(th)h point. Conclusion: The moderate CETP deficiency phenotype included a paradoxically high HDL-C and its sub fractions (as earlier described), positive associations with c-IMT, a postprandial VLDL-C increment predicting negatively CETP activity and CETP activity regulating inversely the increment in ApoB100-containing lipoproteins. We hypothesize that the enrichment of TG content in triglyceride-rich ApoB-containing lipoproteins and in TG rich remnants increases lipoproteins` competition to active lipolysis sites, reducing their catabolism and resulting on postprandial lipemia with atherogenic consequences.
Resumo:
Shwachman-Bodian-Diamond syndrome is an autosomal recessive genetic syndrome with pleiotropic phenotypes, including pancreatic deficiencies, bone marrow dysfunctions with increased risk of myelodysplasia or leukemia, and skeletal abnormalities. This syndrome has been associated with mutations in the SBDS gene, which encodes a conserved protein showing orthologs in Archaea and eukaryotes. The Shwachman-Bodian-Diamond syndrome pleiotropic phenotypes may be an indication of different cell type requirements for a fully functional SBDS protein. RNA-binding activity has been predicted for archaeal and yeast SBDS orthologs, with the latter also being implicated in ribosome biogenesis. However, full-length SBDS orthologs function in a species-specific manner, indicating that the knowledge obtained from model systems may be of limited use in understanding major unresolved issues regarding SBDS function, namely, the effect of mutations in human SBDS on its biochemical function and the specificity of RNA interaction. We determined the solution structure and backbone dynamics of the human SBDS protein and describe its RNA binding site using NMR spectroscopy. Similarly to the crystal structures of Archaea, the overall structure of human SBDS comprises three well-folded domains. However, significant conformational exchange was observed in NMR dynamics experiments for the flexible linker between the N-terminal domain and the central domain, and these experiments also reflect the relative motions of the domains. RNA titrations monitored by heteronuclear correlation experiments and chemical shift mapping analysis identified a classic RNA binding site at the N-terminal FYSH (fungal, Yhr087wp, Shwachman) domain that concentrates most of the mutations described for the human SBDS. (C) 2010 Elsevier Ltd. All rights reserved.