3 resultados para data centric storage

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This in vitro study evaluated the microtensile bond strength of a resin composite to Er:YAG-prepared dentin after long-term storage and thermocycling. Eighty bovine incisors were selected and their roots removed. The crowns were ground to expose superficial dentin. The samples were randomly divided according to cavity preparation method (I-Er:YAG laser and II-carbide bur). Subsequently, an etch & rinse adhesive system was applied and the samples were restored with a resin composite. The samples were subdivided according to time of water storage (WS)/number of thermocycles (TC) performed: A) 24 hours WS/no TC; B) 7 days WS/500 TC; C) 1 month WS/2,000 TC; D) 6 months WS/12,000 TC. The teeth were sectioned in sticks with a cross-sectional area of 1.0-mm(2), which were loaded in tension in a universal testing machine. The data were subjected to two-way ANOVA, Scheffe and Fisher`s tests at a 5% level. In general, the bur-prepared group displayed higher microtensile bond strength values than the laser-treated group. Based on one-month water storage and 2,000 thermocycles, the performance of the tested adhesive system to Er:YAG-laser irradiated dentin was negatively affected (Group IC), while adhesion of the bur-prepared group decreased only within six months of water storage combined with 12,000 thermocycles (Group IID). It may be concluded that adhesion to the Er:YAG laser cavity preparation was more affected by the methods used for simulating degradation of the adhesive interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The endosperm of seeds of Sesbania virgata (Cav.) Pers. accumulates galactomannan as a cell wall storage polysaccharide. It is hydrolysed by three enzymes, one of them being alpha-galactosidase. A great amount of protein bodies is found in the cytoplasm of endospermic cells, which are thought to play the major role as a nitrogen reserve in this seed. The present work aimed at understanding how the production of enzymes that degrade storage compounds is controlled. We performed experiments with addition of inhibitors of transcription (actinomycin-d and alpha-amanitin) and translation (cycloheximide) during and after germination. In order to follow the performance of storage mobilisation, we measured fresh mass, protein contents and alpha-galactosidase activity. All the inhibitors tested had little effect on seed germination and seedling development. Actinomycin-d and cycloheximide provoked a slight inhibition of the storage protein degradation and concomitantly lead to an elevation of the alpha-galactosidase activity. Although alpha-amanitin showed some effect on seedling development at latter stages, it presented the former effect and did not change galactomannan degradation performance. Our data suggest that some of the proteases may be synthesised de novo, whereas alpha-galactosidase seems to be present in the endosperm cells probably as an inactive polypeptide in the protein bodies, being probably activated by proteolysis when the latter organelle is disassembled. These evidences suggest the existence of a connection between storage proteins and carbohydrates mobilisation in seeds of S. virgata, which would play a role by assuring a balanced afflux of the carbon and nitrogen to the seedling development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The details of the mechanism of persistent luminescence were probed by investigating the trap level structure of Sr(2)MgSi(2)O(7):Eu(2+),R(3+) materials (R: Y, La-Lu, excluding Pm and Eu) with thermoluminescence (TL) measurements and Density Functional Theory (DFT) calculations. The TL results indicated that the shallowest traps for each Sr(2)MgSi(2)O(7):Eu(2+),R(3+) material above room temperature were always ca. 0.7 eV corresponding to a strong TL maximum at ca. 90 A degrees C. This main trap energy was only slightly modified by the different co-dopants, which, in contrast, had a significant effect on the depths of the deeper traps. The combined results of the trap level energies obtained from the experimental data and DFT calculations suggest that the main trap responsible for the persistent luminescence of the Sr(2)MgSi(2)O(7):Eu(2+),R(3+) materials is created by charge compensation lattice defects, identified tentatively as oxygen vacancies, induced by the R(3+) co-dopants.