146 resultados para dark-germination.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The objective of the present study was to evaluate the effects of light and temperature on germination of Cereus pernambucensis seeds, a species of columnar cactus native to Brazil and naturally incident in the restinga. Cereus pernambucensis seeds were incubated under different temperatures, from 5 to 45 °C, with 5 °C intervals, and under alternating temperatures of 15-20 °C, 15-30 °C, 20-25 °C, 20-30 °C, 20-35 °C, 25-30 °C, 25-35 °C, and 30-35 °C, both under continuous white light and dark. The seeds were also incubated in a gradient of phytochrome photoequilibrium at 25 °C. The highest percentage germination in this species was between 25 and 30 °C. The minimum temperature was between 15 and 20 °C and the maximum between 35 and 40 °C. Alternating temperatures did not affect the percentage of seed germination, but it did alter the rate and synchronization indexes. Seeds incubated in the dark did not germinate under any of the conditions tested, indicating that this species when cultivated present light sensitive seeds controlled by phytochrome. The seeds can tolerate a lot of shade conditions, germinating under very low fluence response of phytochrome.
Resumo:
Background and Aims In the Amazonian floodplains plants withstand annual periods of flooding which can last 7 months. Under these conditions seedlings remain submerged in the dark for long periods since light penetration in the water is limited. Himatanthus sucuuba is a tree species found in the `varzea` (VZ) floodplains and adjacent non-flooded `terra-firme` (TF) forests. Biochemical traits which enhance flood tolerance and colonization success of H. sucuuba in periodically flooded environments were investigated. Methods Storage carbohydrates of seeds of VZ and TF populations were extracted and analysed by HPAEC/PAD. Starch was analysed by enzyme (glucoamylase) degradation followed by quantification of glucose oxidase. Carbohydrate composition of roots of VZ and TF seedlings was studied after experimental exposure to a 15-d period of submersion in light versus darkness. Key Results The endosperm contains a large proportion of the seed reserves, raffinose being the main nonstructural carbohydrate. Around 93% of the cell wall storage polysaccharides (percentage dry weight basis) in the endosperm of VZ seeds was composed of mannose, while soluble sugars accounted for 2.5%. In contrast, 74% of the endosperm in TF seeds was composed of galactomannans, while 22% of the endosperm was soluble sugars. This suggested a larger carbohydrate allocation to germination in TF populations whereas VZ populations allocate comparatively more to carbohydrates mobilized during seedling development. The concentration of root non-structural carbohydrates in non-flooded seedlings strongly decreased after a 15-d period of darkness, whereas flooded seedlings were less affected. These effects were more pronounced in TF seedlings, which showed significantly lower root non-structural carbohydrate concentrations. Conclusions There seem to be metabolic adjustments in VZ but not TF seedlings that lead to adaptation to the combined stresses of darkness and flooding. This seems to be important for the survival of the species in these contrasting environments, leading these populations to different directions during evolution.
Resumo:
A ferrugem asiática, causada pelo fungo Phakopsora pachyrhizi, apresenta-se como um dos mais graves problemas fitossanitários da cultura da soja no Brasil, principalmente por não existirem, até o presente momento, cultivares com níveis de resistência satisfatórios. Objetivou-se estudar a influência da luminosidade e da camada de cera das superfícies foliares na infecção de folhas de soja por P. pachyrhizi. A superfície adaxial ou abaxial de folíolos do primeiro trifólio de plantas da cultivar BRS 154, estádio fenológico V2, foi inoculada com suspensão de 10(5) urediniósporos/mL-1. As plantas foram mantidas por 24 horas em câmara úmida e temperatura de 23ºC, sob luz ou escuro, em delineamento fatorial. Posteriormente, permaneceram 14 dias em fotoperíodo de 12 horas, sendo em seguida avaliada a densidade de lesões e a severidade da doença. Em um segundo experimento, avaliou-se in vitro , no escuro e na luz, a porcentagem de germinação de urediniósporos e de formação de apressórios. As camadas de cera adaxial e abaxial dos folíolos foram analisadas quantitativamente (extrações com clorofórmio) e estruturalmente (microscopia eletrônica de varredura). A densidade de lesões e a severidade foram maiores quando se inoculou a superfície adaxial de plantas incubadas no escuro, sem interação significativa entre os fatores. A germinação dos esporos no escuro (40,7%) foi significativamente superior à germinação na luz (28,5%). O mesmo ocorreu para a formação de apressórios, no escuro (24,7%) e na luz (12,8%). A quantidade e a estrutura das ceras epicuticulares não apresentaram diferenças entre as duas superfícies.
Resumo:
Physiological and biochemical aspects of assai palm during seed germination and early seedling growth were investigated. Seeds collected from plants growing in flooded and upland forests were used to determine the influence of normoxic (aerobic) and anoxic (anaerobic) conditions in germination and the initial and average time of development in the roots and shoots. After 75 days, seedlings germinated under normoxia were transferred to trays and submitted to flooding. Seed reserves (lipids, proteins, soluble sugars and starch) were monitored for quiescent and germinated seeds maintained under normoxic and anoxic conditions, as well as after 5, 10 and 20 days of seedling growth. Alcohol dehydrogenase (ADH) activity was quantified in roots and leaves of seedlings without or with flooding (partial and total). Seeds were not able to germinate under anoxia. Different strategies of storage mobilization of lipids, proteins, soluble sugars and starch were observed in seeds of each environment. ADH activity was induced by anoxia, with the highest level observed in the leaves. This study showed that, under normoxic conditions, the best developmental performance of assai palm seeds, from flooded or upland forest areas, during germination was associated with primary metabolites mobilization and seedling flooding tolerance with increased ADH activity. We conclude that the assai palm is well adapted to the anoxic conditions provoked by flooding.
Resumo:
In this work, different reactions in vitro between an environmental bacterial isolate and fungal species were related. The Gram-positive bacteria had terminal and subterminal endospores, presented metabolic characteristics of mesophilic and acidophilic growth, halotolerance, positive to nitrate reduction and enzyme production, as caseinase and catalase. The analysis of partial sequences containing 400 to 700 bases of the 16S ribosomal RNA gene showed identity with the genus Bacillus. However, its identity as B. subtilis was confirmed after analyses of the rpoB, gyrA, and 16S rRNA near-full-length sequences. Strong inhibitory activity of environmental microorganisms, such as Penicillium sp, Aspergillus flavus, A. niger, and phytopathogens, such as Colletotrichum sp, Alternaria alternata, Fusarium solani and F. oxysporum f.sp vasinfectum, was shown on co-cultures with B. subtilis strain, particularly on Sabouraud dextrose agar (SDA) and DNase media. Red and red-ochre color pigments, probably phaeomelanins, were secreted by A. alternata and A. niger respectively after seven days of co-culture.
Resumo:
The Dark-winged Trumpeter, Psophia viridis (Gruiformes, Psophiidae) is a Brazilian endemic species and includes three subspecies: Psophia viridis viridis Spix, 1825; Psophia v. dextralis Conover, 1934, and Psophia v. obscura Pelzeln, 1857, as well as P. v. interjecta Griscom & Greenway, 1937, whose validity has been questioned by several authors. These taxa are allopatric in distribution along the south of the Amazon River, although the precise limits of their distribution still remain unknown. This complex has never been taxonomically reviewed and this work aims to test the validity of its taxa based on the Phylogenetic Species Concept. Morphometrical characters and plumage colour patterns were analyzed, and the distribution of the taxa was also revised. In this study, 108 specimens from 41 localities were examined (all types included), with each reliable literature-based locality being included in order to delimit the geographical distribution of the complex. Morphometrical data did not point out significant differences between the taxa, also showing no sexual dimorphism among them. Meanwhile, plumage characters showed consistent and distinct patterns for each of the taxa, except for P. v. interjecta, whose features indicated by authors as diagnosable are the result of individual variation. No clinal variation or intergradation were observed, even at regions close to the rivers headwaters, where supposedly populations could be in contact. It is suggested that the currently accepted subspecies be elevated to the species level, such as: Psophia viridis Spix, 1825, distributed in the Madeira-Tapajós interfluvium, P. dextralis, found in the Tapajós-Tocantins interfluvium, and P. obscura, which occurs from the right bank of the Tocantins River to the west of the State of Maranhão.
Resumo:
The influence of a possible nonzero chemical potential mu on the nature of dark energy is investigated by assuming that the dark energy is a relativistic perfect simple fluid obeying the equation of state, p=omega rho (omega < 0, constant). The entropy condition, S >= 0, implies that the possible values of omega are heavily dependent on the magnitude, as well as on the sign of the chemical potential. For mu > 0, the omega parameter must be greater than -1 (vacuum is forbidden) while for mu < 0 not only the vacuum but even a phantomlike behavior (omega <-1) is allowed. In any case, the ratio between the chemical potential and temperature remains constant, that is, mu/T=mu(0)/T(0). Assuming that the dark energy constituents have either a bosonic or fermionic nature, the general form of the spectrum is also proposed. For bosons mu is always negative and the extended Wien's law allows only a dark component with omega <-1/2, which includes vacuum and the phantomlike cases. The same happens in the fermionic branch for mu < 0. However, fermionic particles with mu > 0 are permitted only if -1
Resumo:
We discuss the dynamics of the Universe within the framework of the massive graviton cold dark matter scenario (MGCDM) in which gravitons are geometrically treated as massive particles. In this modified gravity theory, the main effect of the gravitons is to alter the density evolution of the cold dark matter component in such a way that the Universe evolves to an accelerating expanding regime, as presently observed. Tight constraints on the main cosmological parameters of the MGCDM model are derived by performing a joint likelihood analysis involving the recent supernovae type Ia data, the cosmic microwave background shift parameter, and the baryonic acoustic oscillations as traced by the Sloan Digital Sky Survey red luminous galaxies. The linear evolution of small density fluctuations is also analyzed in detail. It is found that the growth factor of the MGCDM model is slightly different (similar to 1-4%) from the one provided by the conventional flat Lambda CDM cosmology. The growth rate of clustering predicted by MGCDM and Lambda CDM models are confronted to the observations and the corresponding best fit values of the growth index (gamma) are also determined. By using the expectations of realistic future x-ray and Sunyaev-Zeldovich cluster surveys we derive the dark matter halo mass function and the corresponding redshift distribution of cluster-size halos for the MGCDM model. Finally, we also show that the Hubble flow differences between the MGCDM and the Lambda CDM models provide a halo redshift distribution departing significantly from the those predicted by other dark energy models. These results suggest that the MGCDM model can observationally be distinguished from Lambda CDM and also from a large number of dark energy models recently proposed in the literature.
Resumo:
The mass function of cluster-size halos and their redshift distribution are computed for 12 distinct accelerating cosmological scenarios and confronted to the predictions of the conventional flat Lambda CDM model. The comparison with Lambda CDM is performed by a two-step process. First, we determine the free parameters of all models through a joint analysis involving the latest cosmological data, using supernovae type Ia, the cosmic microwave background shift parameter, and baryon acoustic oscillations. Apart from a braneworld inspired cosmology, it is found that the derived Hubble relation of the remaining models reproduces the Lambda CDM results approximately with the same degree of statistical confidence. Second, in order to attempt to distinguish the different dark energy models from the expectations of Lambda CDM, we analyze the predicted cluster-size halo redshift distribution on the basis of two future cluster surveys: (i) an X-ray survey based on the eROSITA satellite, and (ii) a Sunayev-Zeldovich survey based on the South Pole Telescope. As a result, we find that the predictions of 8 out of 12 dark energy models can be clearly distinguished from the Lambda CDM cosmology, while the predictions of 4 models are statistically equivalent to those of the Lambda CDM model, as far as the expected cluster mass function and redshift distribution are concerned. The present analysis suggests that such a technique appears to be very competitive to independent tests probing the late time evolution of the Universe and the associated dark energy effects.
Resumo:
We discuss the properties of homogeneous and isotropic flat cosmologies in which the present accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM) particles (Omega(m) = 1). For some matter creation rates proposed in the literature, we show that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth factor, and the cluster formation rate are analytically defined. The best CCDM scenario has only one free parameter and our joint analysis involving baryonic acoustic oscillations + cosmic microwave background (CMB) + SNe Ia data yields (Omega) over tilde = 0.28 +/- 0.01 (1 sigma), where (Omega) over tilde (m) is the observed matter density parameter. In particular, this implies that the model has no dark energy but the part of the matter that is effectively clustering is in good agreement with the latest determinations from the large- scale structure. The growth of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to the usual Lambda CDM cosmology. Such results point to the possibility of a crucial observational test confronting CCDM with Lambda CDM scenarios through a more detailed analysis involving CMB, weak lensing, as well as the large-scale structure.
Resumo:
We analyze the interaction between dark energy and dark matter from a thermodynamical perspective. By assuming they have different temperatures, we study the possibility of occurring a decay from dark matter into dark energy, characterized by a negative parameter Q. We find that, if at least one of the fluids has nonvanishing chemical potential, for instance mu(x)< 0 and mu(dm)=0 or mu(x)=0 and mu(dm)> 0, the decay is possible, where mu(x) and mu(dm) are the chemical potentials of dark energy and dark matter, respectively. Using recent cosmological data, we find that, for a fairly simple interaction, the dark matter decay is favored with a probability of similar to 93% over the dark energy decay. This result comes from a likelihood analysis where only background evolution has been considered.
Resumo:
We investigate the effect of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. This effect is computed through the Layser-Irvine equation, which describes how an astrophysical system reaches virial equilibrium and was modified to include the dark interactions. Using observational data from almost 100 purportedly relaxed galaxy clusters we put constraints on the strength of the couplings in the dark sector. We compare our results with those from other observations and find that a positive (in the sense of energy flow from dark energy to dark matter) nonvanishing interaction is consistent with the data within several standard deviations.
Resumo:
We propose a field theory model for dark energy and dark matter in interaction. Comparing the classical solutions of the field equations with the observations of the CMB shift parameter, baryonic acoustic oscillations, lookback time, and the Gold supernovae sample, we observe a possible interaction between dark sectors with energy decay from dark energy into dark matter. The observed interaction provides an alleviation to the coincidence problem.
Resumo:
The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations.
Resumo:
Cosmological analyses based on currently available observations are unable to rule out a sizeable coupling between dark energy and dark matter. However, the signature of the coupling is not easy to grasp, since the coupling is degenerate with other cosmological parameters, such as the dark energy equation of state and the dark matter abundance. We discuss possible ways to break such degeneracy. Based on the perturbation formalism, we carry out the global fitting by using the latest observational data and get a tight constraint on the interaction between dark sectors. We find that the appropriate interaction can alleviate the coincidence problem.