170 resultados para damage mechanisms
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A high nitrogen austenitic stainless steel (0.9wt% N) and an ordinary 304 austenitic stainless steel were submitted to cavitation-erosion tests in a vibratory apparatus operating at a frequency of 20 kHz. The high nitrogen stainless steel was obtained by high temperature gas nitriding a 1-mm thick strip of an UNS 31803 duplex stainless steel. The 304 austenitic stainless steel was used for comparison purposes. The specimens were characterized by scanning electron microscopy and Electron Back Scatter Diffraction. The surface of the cavitation damaged specimens was analyzed trying to find out the regions where cavitation damage occurred preferentially. The distribution of sites where cavitation inception occurred was extremely heterogeneous, concentrating basically at (i) slip lines inside some grains and (ii) Sigma-3 coincidence site lattice (CSL) boundaries (twin boundaries). Furthermore, it was observed that the CE damage spread faster inside those grains which were more susceptible to damage incubation. The damage heterogeneity was addressed to plasticity anisotropy. Grains in which the crystallographic orientation leads to high resolved shear stress show intense damage at slip lines. Grain boundaries between grains with large differences in resolved shear stress where also intensely damaged. The relationship between crystallite orientation distributions, plasticity anisotropy and CE damage mechanisms are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Thin hard coatings on components and tools are used increasingly due to the rapid development in deposition techniques, tribological performance and application skills. The residual stresses in a coated surface are crucial for its tribological performance. Compressive residual stresses in PVD deposited TiN and DLC coatings were measured to be in the range of 0.03-4 GPa on steel substrate and 0.1-1.3 GPa on silicon. MoS(2) coatings had tensional stresses in the range of 0.8-1.3 on steel and 0.16 GPa compressive stresses on silicon. The fracture pattern of coatings deposited on steel substrate were analysed both in bend testing and scratch testing. A micro-scale finite element method (FEM) modelling and stress simulation of a 2 mu m TiN-coated steel surface was carried out and showed a reduction of the generated tensile buckling stresses in front of the sliding tip when compressive residual stresses of 1 GPa were included in the model. However, this reduction is not similarly observed in the scratch groove behind the tip, possibly due to sliding contact-induced stress relaxation. Scratch and bending tests allowed calculation of the fracture toughness of the three coated surfaces, based on both empirical crack pattern observations and FEM stress calculation, which resulted in highest values for TiN coating followed by MoS(2) and DLC coatings, being K(C) = 4-11, about 2, and 1-2 MPa M(1/2), respectively. Higher compressive residual stresses in the coating and higher elastic modulus of the coating correlated to increased fracture toughness of the coated surface. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the results obtained in pin-on-disk test apparatus using glass and alumina as abrasive materials, showing the rates and mechanisms of abrasive wear of 1070 and 52100 steels, and ductile and white cast irons. The test conditions were selected in order to obtain wear rates that correspond to mild and severe abrasion, using different metal hardness-to-abrasive hardness ratios(H/H(A)) and 0.2 or 0.06 mm abrasive grains. The use of bulk Vickers hardness, instead of microhardness, allows a better description of the different abrasion regions. Under severe abrasion, the microcutting mechanism of wear prevailed together with friction coefficients larger than 0.4. On the other hand, when relatively soft abrasives are tested, indentation of abrasive particles followed by its fragmentation, and a creation of a thin deformed layer were the main damage mechanisms, with the friction coefficient lying below 0.4. The abrasive particle size under mild regime is able to change the wear rates in an order of magnitude. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Envenoming by viper snakes constitutes an important public health problem in Brazil and other developing countries. Local hemorrhage is an important symptom of these accidents and is correlated with the action of snake venom metalloproteinases (SVMPs). The degradation of vascular basement membrane has been proposed as a key event for the capillary vessel disruption. However, SVMPs that present similar catalytic activity towards extracellular matrix proteins differ in their hemorrhagic activity, suggesting that other mechanisms might be contributing to the accumulation of SVMPs at the snakebite area allowing capillary disruption. Methodology/Principal Findings: In this work, we compared the tissue distribution and degradation of extracellular matrix proteins induced by jararhagin (highly hemorrhagic SVMP) and BnP1 (weakly hemorrhagic SVMP) using the mouse skin as experimental model. Jararhagin induced strong hemorrhage accompanied by hydrolysis of collagen fibers in the hypodermis and a marked degradation of type IV collagen at the vascular basement membrane. In contrast, BnP1 induced only a mild hemorrhage and did not disrupt collagen fibers or type IV collagen. Injection of Alexa488-labeled jararhagin revealed fluorescent staining around capillary vessels and co-localization with basement membrane type IV collagen. The same distribution pattern was detected with jararhagin-C (disintegrin-like/cysteine-rich domains of jararhagin). In opposition, BnP1 did not accumulate in the tissues. Conclusions/Significance: These results show a particular tissue distribution of hemorrhagic toxins accumulating at the basement membrane. This probably occurs through binding to collagens, which are drastically hydrolyzed at the sites of hemorrhagic lesions. Toxin accumulation near blood vessels explains enhanced catalysis of basement membrane components, resulting in the strong hemorrhagic activity of SVMPs. This is a novel mechanism that underlies the difference between hemorrhagic and non-hemorrhagic SVMPs, improving the understanding of snakebite pathology.
Resumo:
Increased risk of hypertension after methylmercury (MeHg) exposure has been suggested. However, the underlying mechanisms are not well explored. In this paper, we have analyzed whether sub-chronic exposure to MeHg increases systolic blood pressure even at very low levels. In addition, we analyzed if the methylmercury-induced hypertension is associated with a decreased plasmatic nitric oxide levels and with a dysregulation of the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), as well as the levels of MDA and glutathione. For this study, Wistar rats were treated with methylmercury chloride (100 mu g/kg per day) or vehicle. Total treatment time was 100 days. Malondialdehyde (MDA) and circulating NOx levels and superoxide dismutase (SOD) and catalase (CAT) activities were determined in plasma, whereas glutathione levels were determined in erythrocytes. Our results show that long-term treatment at a low level of MeHg affected systolic blood pressure, increasing and reducing the levels of plasmatic MDA and NOx, respectively. However, the activity of SOD did not decrease in the MeHg exposed group when compared to the control. We found a negative correlation between plasmatic nitrite/nitrate (NOx) levels and systolic blood pressure (r = -0.67; P = 0.001), and a positive correlation between MDA and systolic blood pressure (r = 0.61; P = 0.03), thus suggesting increased inhibition of NO formation with the increase of hypertension. In conclusion, long-term exposure to a low dose of MeHg increases the systolic pressure and is associated, at least in part, with increased production of ROS as judged by increased production of malondialdehyde and depressed NO availability.
Resumo:
Stress is triggered by numerous unexpected environmental, social or pathological stimuli occurring during the life of animals, including humans, which determine changes in all of their systems. Although acute stress is essential for survival, chronic, long-lasting stress can be detrimental. In this review, we present data supporting the hypothesis that stress-related events are characterized by modifications of oxidative/nitrosative pathways in the brain in response to the activation of inflammatory mediators. Recent findings indicate a key role for nitric oxide (NO) and an excess of pro-oxidants in various brain areas as responsible for both neuronal functional impairment and structural damage. Similarly, cyclooxygenase-2 (COX-2), another known source of oxidants, may account for stress-induced brain damage. Interestingly, some of the COX-2-derived mediators, such as the prostaglandin 15d-PGJ2 and its peroxisome proliferator-activated nuclear receptor PPARγ, are activated in the brain in response to stress, constituting a possible endogenous anti-inflammatory mechanism of defense against excessive inflammation. The stress-induced activation of both biochemical pathways depends on the activation of the N-methyl-D-aspartate (NMDA) glutamate receptor and on the activation of the transcription factor nuclear factor kappa B (NFκB). In the case of inducible NO synthase (iNOS), release of the cytokine TNF-α also accounts for its expression. Different pharmacological strategies directed towards different sites in iNOS or COX-2 pathways have been shown to be neuroprotective in stress-induced brain damage: NMDA receptor blockers, inhibitors of TNF-α activation and release, inhibitors of NFκB, specific inhibitors of iNOS and COX-2 activities and PPARγ agonists. This article reviews recent contributions to this area addressing possible new pharmacological targets for the treatment of stress-induced neuropsychiatric disorders.
Resumo:
The systemic aspect of vascular damage induced by angiotensin II (ANG II) has been poorly explored in the literature. Considering the presence of ANG II and its specific receptor AT1, in several organs, all tissues might be potentially affected by its effects. The aims of this study were: To evaluate the early histological changes in the heart, liver and kidneys, produced by ANG II infusion, to evaluate the protective effect of losartan. Wistar rats were distributed into three groups: control (no treatment), treated with ANG II, and treated with ANG II + losartan. ANG II was continuously infused over 72 hours by subcutaneous osmotic pumps. Histological sections of the myocardium, kidneys and liver were stained and observed for the presence of necrosis. There were ANG II-induced perivascular inflammation and necrosis of the arteriolar wall in the myocardium, kidney, and liver by, which were partially prevented by losartan. There was no significant correlation between heart and kidney damage. Tissue lesion severity was lower than that of vascular lesions, without statistical difference between groups. ANG II causes vascular injury in the heart, kidneys and liver, indicating a systemic vasculotoxic effect; the mechanisms of damage/protection vary depending on the target organ; perivascular lesions may occur even when anti-hypertensive doses of losartan are used.
Resumo:
An experimental testing program was undertaken to investigate failure mechanisms induced by the active movement of a deep rectangular trapdoor underlying a granular soil. Reduced-scale models were tested under normal gravity as well as under an increased gravitational field using a centrifuge facility. Some models were used to evaluate the performance of both flexible and rigid pipes undergoing a localized loss of support. Failure mechanisms in the longitudinal direction of the models were characterized by a single, well-defined failure surface that developed within the limits of the trapdoor. However, failure mechanisms in the transverse direction of the models were characterized by multiple failure surfaces extending outside the limits of the trapdoor. Significant dilation of the soil located immediately above the trapdoor was identified in the failure of the models. The pattern of the failure mechanisms was found to be affected by the stress level and backfill density. Higher stress levels were found to lead to well-developed failure zones. The influence of backfill density was found to be more relevant in models involving flexible pipes. Pipes embedded within loose backfill were severely damaged after loss of support, while pipes embedded in dense backfill experienced negligible deformations. These results indicate that damage to pipelines caused by ground loss of support can be significantly minimized by controlling the compaction of the fill.
Resumo:
Specimens of a UNS S31803 steel were submitted to high temperature gas nitriding and then to vibratory pitting wear tests. Nitrided samples displayed fully austenitic microstructures and 0.9 wt. % nitrogen contents. Prior to pitting tests, sample texture was characterized by electron backscattering diffraction, EBSD. Later on, the samples were tested in a vibratory pit testing equipment using distilled water Pitting tests were periodically interrupted to evaluate mass loss and to characterize the surface wear by SEM observations. At earlier pit erosion, stages intense and highly heterogeneous plastic deformation inside individual grains was observed. Later on, after the incubation period, mass loss by debris detachment was observed. Initial debris micro fracturing was addressed to low cycle fatigue. Damage started at both sites, inside the grains and grain boundaries. The twin boundaries were the most prone to mass-loss incubation. Grains with (101) planes oriented near parallel to the sample surface displayed higher wear resistance than grains with other textures. This was attributed to lower resolved stresses for plastic deformation inside the grains with (101)
Resumo:
Resistance to chemotherapeutic drugs can be an obstacle to a successful treatment of cancer patients in part associated with individual response and differences in the DNA repair system. The Comet assay is an informative test to investigate DNA damage and repair in cells in response to a variety of DNA-damaging agents, including chemotherapeutic drugs. The aim of this study was to assess leukocytes damage after in-vitro cisplatin treatment and DNA repair action using the Comet assay in 20 patients with melanoma and 20 cancer-free individuals. Leukocytes` DNA damage before and after cisplatin treatment, in three different concentrations, was analyzed. The DNA repair capability was investigated after 1-5 h of in-vitro cells growing without cisplatin. The Comet score of the patients` basal DNA damage was higher than that observed in controls, but the difference was not statistically significant (P=0.85). Although both groups had similar Comet scores to all cisplatin concentrations tested and the DNA repair times, the basal DNA damage (P < 0.001) and cisplatin damages (P < 0.005) were statistically lower than the different repair times investigated. Considering the progressive increase in the Comet score due to repair time, the negative results here observed could be associated with the reduced cell culture incubation that should be better evaluated. Considering the mutagenic action of cisplatin on tumor cells and the importance of individual DNA repair mechanisms in the chemotherapeutic melanoma treatment, the peripheral leukocytes could be particularly useful as a tool for DNA repair response identified by the Comet assay. Melanoma Res 21:99-105 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Rationale Sepsis is a leading cause of death in the intensive care unit, characterized by a systemic inflammatory response (SIRS) and bacterial infection, which can often induce multiorgan damage and failure. Leukocyte recruitment, required to limit bacterial spread, depends on phosphoinositide-3 kinase gamma (PI3K gamma) signaling in vitro; however, the role of this enzyme in polymicrobial sepsis has remained unclear. Objectives: This study aimed to determine the specific role of the kinase activity of PI3K gamma in the pathogenesis of sepsis and multiorgan damage. Methods. PI3K gamma wild-type, knockout, and kinase-dead mice were exposed to cecal ligation and perforation induced sepsis and assessed for survival; pulmonary, hepatic, and cardiovascular damage; coagulation derangements; systemic inflammation; bacterial spread; and neutrophil recruitment. Additionally, wild-type mice were treated either before or after the onset of sepsis with a PI3K gamma inhibitor and assessed for survival, neutrophil recruitment, and bacterial spread. Measurements and Main Results: Both genetic and pharmaceutical PI3K gamma kinase inhibition significantly improved survival, reduced multiorgan damage, and limited bacterial decompartmentalization, while modestly affecting SIRS. Protection resulted from both neutrophil-independent mechanisms, involving improved cardiovascular function, and neutrophil-dependent mechanisms, through reduced susceptibility to neutrophil migration failure during severe sepsis by maintaining neutrophil surface expression of the chemokine receptor, CXCR2. Furthermore, PI3K gamma pharmacological inhibition significantly decreased mortality and improved neutrophil migration and bacterial control, even when administered during established septic shock. Conclusions: This study establishes PI3K gamma as a key molecule in the pathogenesis of septic infection and the transition from SIRS to organ damage and identifies it as a novel possible therapeutic target.
Resumo:
Our objective was to evaluate the role of heme-oxygenase 1 (HO-1)/biliverdin/CO pathway in gastric defense against ethanol-induced gastric damage in mice. Mice were pre-treated with saline, hemin (HO-1 inducer), biliverdin (HO-1 product), dimanganese decacarbonyl (DMDC, CO donor) or zinc protoporphyrin IX (ZnPP IX, HO-1 antagonist). Another group received soluble guanylate cyclase (sGC) inhibitor (ODQ) 30 min before hemin, biliverdin or DMDC. After 30 min, gastric damage was induced by ethanol. After one hour, rats were sacrificed. Gastric lesions were measured using a computer planimetry program, and gastric corpus pieces were assayed for malonylaldehyde (MDA), glutathione (GSH) or bilirubin. HO-1 expression was determined after saline or ethanol administration by polymerase chain reaction (PCR) or immunohistochemistry. Ethanol (25% or 50%) induced gastric damage, increased MDA levels and reduced GSH in the gastric tissue. Ethanol 50% increased HO-1 mRNA transcripts, HO-1 immunoreactivity, and bilirubin concentration in gastric mucosa. Pre-treatment with hemin reduced gastric damage and MDA formation and increased GSH concentration in the gastric mucosa. ZnPP IX amplified the ethanol-induced gastric lesion, increased MDA formation and decreased GSH concentration in gastric mucosa. Biliverdin and DMDC reduced gastric damage and MDA formation and increased GSH concentration in the gastric tissue. ODQ completely abolished the DMDC protective gastric effect However, effects of hemin or biliverdin did not change with ODQ treatment. Our results suggest that HO-1/biliverdin/CO pathway plays a protective role against ethanol-induced gastric damage through mechanisms that can be dependent (CO) or independent (biliverdin) of sGC activation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Rationale Hyperaldosteronism, important in hypertension, is associated with electrolyte alterations, including hypomagnesemia, through unknown mechanisms. Objective To test whether aldosterone influences renal Mg(2+) transporters, (transient receptor potential melastatin (TRPM) 6, TRPM7, paracellin-1) leading to hypomagnesemia, hypertension and target organ damage and whether in a background of magnesium deficiency, this is exaggerated. Methods and results Aldosterone effects in mice selectively bred for high-normal (MgH) or low (MgL) intracellular Mg(2+) were studied. Male MgH and MgL mice received aldosterone (350 mu g/kg per day, 3 weeks). SBP was elevated in MgL. Aldosterone increased blood pressure and albuminuria and increased urinary Mg(2+) concentration in MgH and MgL, with greater effects in MgL. Activity of renal TRPM6 and TRPM7 was lower in vehicle-treated MgL than MgH. Aldosterone increased activity of TRPM6 in MgH and inhibited activity in MgL. TRPM7 and paracellin-1 were unaffected by aldosterone. Aldosterone-induced albuminuria in MgL was associated with increased renal fibrosis, increased oxidative stress, activation of mitogen-activated protein kinases and nuclear factor-NF-kappa B and podocyte injury. Mg(2+) supplementation (0.75% Mg(2+)) in aldosterone-treated MgL normalized plasma Mg(2+), increased TRPM6 activity and ameliorated hypertension and renal injury. Hence, in a model of inherited hypomagnesemia, TRPM6 and TRPM7, but not paracellin-1, are downregulated. Aldosterone further decreased TRPM6 activity in hypomagnesemic mice, a phenomenon associated with hypertension and kidney damage. Such effects were prevented by Mg(2+) supplementation. Conclusion Amplified target organ damage in aldosterone-induced hypertension in hypomagnesemic conditions is associated with dysfunctional Mg(2+)-sensitive renal TRPM6 channels. Novel mechanisms for renal effects of aldosterone and insights into putative beneficial actions of Mg(2+), particularly in hyperaldosteronism, are identified. J Hypertens 29: 1400-1410 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
The aim of this study was to evaluate the protective effect of hydrogen sulfide (H(2)S) on ethanol-induced gastric lesions in mice and the influence of ATP-sensitive potassium (K(ATP)) channels, capsaicin-sensitive sensory afferent neurons, and transient receptor potential vanilloid (TRPV) 1 receptors on such an effect. Saline and L-cysteine alone or with propargylglycine, sodium hydrogen sulfide (NaHS), or Lawesson`s reagent were administrated for testing purposes. For other experiments, mice were pretreated with glibenclamide, neurotoxic doses of capsaicin, or capsazepine. Afterward, mice received L-cysteine, NaHS, or Lawesson`s reagent. After 30 min, 50% ethanol was administrated by gavage. After 1 h, mice were sacrificed, and gastric damage was evaluated by macroscopic and microscopic analyses. L-Cysteine, NaHS, and Lawesson`s reagent treatment prevented ethanol-induced macroscopic and microscopic gastric damage in a dose-dependent manner. Administration of propargylglycine, an inhibitor of endogenous H(2)S synthesis, reversed gastric protection induced by L-cysteine. Glibenclamide reversed L-cysteine, NaHS, or Lawesson`s reagent gastroprotective effects against ethanol-induced macroscopic damage in a dose-dependent manner. Chemical ablation of sensory afferent neurons by capsaicin reversed gastroprotective effects of L-cysteine or H(2)S donors (NaHS or Lawesson`s reagent) in ethanol-induced macroscopic gastric damage. Likewise, in the presence of the TRPV1 antagonist capsazepine, the gastroprotective effects of L-cysteine, NaHS, or Lawesson`s reagent were also abolished. Our results suggest that H(2)S prevents ethanol-induced gastric damage. Although there are many mechanisms through which this effect can occur, our data support the hypothesis that the activation of K(ATP) channels and afferent neurons/TRPV1 receptors is of primary importance.
Resumo:
Background: High sodium salicylate doses can cause reversible hearing loss and tinnitus, possibly due to reduced outer hair cell electromotility. Sodium salicylate is known to alter outer hair cell structure and function. This study determined the reversibility and cochlear recovery time after administration of an ototoxic sodium salicylate dose to guinea pigs with normal cochlear function. Study design: Prospective experimental investigation. Methods: All animals received a single 500 mg sodium salicylate dose, but with different durations of action. Function was evaluated before drug administration and immediately before sacrifice. Cochleae were processed and viewed using scanning electron microscopy. Results: Changes in outer hair cell function were observed to be present 2 hours after drug administration, with recovery of normal anatomy beginning after 24 hours. Subsequently, derangement and distortion of cilia reduced, with effects predominantly in row three. At 168 hours, cilia were near-normal but with mild distortions which interfered with normal cochlear physiology. Conclusions: Ciliary changes persisted for up to 168 hours after ototoxic sodium salicylate administration.