51 resultados para crop simulation model

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, maize has become one of the main alternative crops for the autumn winter growing season in the central-western and southeastern regions of Brazil. However, water deficits, sub-optimal temperatures and low solar radiation levels are common problems that are experienced during this growing season by local farmers. One methodology to assess the impact of variable weather conditions on crop production is the use of crop simulation models. The goal of this study was to evaluate the effect of climate variability on maize yield for a subtropical region of Brazil. Specific objectives for this study were (1) to analyse the effect of El Nino Southern Oscillation (ENSO) on precipitation and air temperature for four locations in the state of Sao Paulo and (2) to analyse the impact of ENSO on maize grown off-season for the same four locations using a crop simulation model. For each site, historical weather data were categorised as belonging to one of three phases of ENSO: El Nino (warm sea surface temperature anomalies in the Pacific), La Nina (cool sea surface temperature anomalies) or neutral, based on an index derived from observed sea surface temperature anomalies. During El Nino, there is a tendency for an increase in the rainfall amount during May for the four selected locations, and also during April, mainly in three of the locations, resulting in an increase in simulated maize yield planted between February 15 and March 15. In general, there was a decrease in the simulated yield for maize grown off-season during neutral years. This study showed how a crop model can be used to assess the impact of climate variability on the yield of maize grown off-season in a subtropical region of Brazil. The outcomes of this study can be very useful for both policy makers and local farmers for agricultural planning and decision making. Copyright (C) 2009 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Warm-season grasses are economically important for cattle production in tropical regions, and tools to aid in management and research of these forages would be highly beneficial. Crop simulation models synthesize numerous physiological processes and are important research tools for evaluating production of warm-season grasses. This research was conducted to adapt the perennial CROPGRO Forage model to simulate growth of the tropical species palisadegrass [Brachiaria brizantha (A. Rich.) Stapf. cv. Xaraes] and to describe model adaptation for this species. In order to develop the CROPGRO parameters for this species, we began with values and relationships reported in the literature. Some parameters and relationships were calibrated by comparison with observed growth, development, dry matter accumulation and partitioning during a 2-year experiment with Xaraes palisadegrass in Piracicaba, SP, Brazil. Starting with parameters for the bahiagrass (Paspalum notatum Flugge) perennial forage model, dormancy effects had to be minimized, and partitioning to storage tissue/root decreased, and partitioning to leaf and stem increased to provide for more leaf and stem growth and less root. Parameters affecting specific leaf area (SLA) and senescence of plant tissues were improved. After these changes were made to the model, biomass accumulation was better simulated, mean predicted herbage yield per cycle was 3573 kg ha(-1), with a RMSE of 538 kg DM ha(-1) (D-Stat = 0.838, simulated/observed ratio = 1.028). The results of the adaptation suggest that the CROPGRO model is an efficient tool to integrate physiological aspects of palisadegrass and can be used to simulate growth. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stingless bees play an important ecological role as pollinators of many wild plant species in the tropics and have significant potential for the pollination of agricultural crops. Nevertheless, conservation efforts as well as commercial breeding programmes require better guidelines on the amount of genetic variation that is needed to maintain viable populations. In this context, we carried out a long-term genetic study on the stingless bee Melipona scutellaris to evaluate the population viability consequences of prolonged breeding from a small number of founder colonies. In particular, it was artificially imposed a genetic bottleneck by setting up a population starting from only two founder colonies, and continued breeding from it for a period of over 10 years in a location outside its natural area of occurrence. We show that despite a great reduction in the number of alleles present at both neutral microsatellite loci and the sex-determining locus relative to its natural source population, and an increased frequency in the production of sterile diploid males, the genetically impoverished population could be successfully bred and maintained for at least 10 years. This shows that in stingless bees, breeding from a small stock of colonies may have less severe consequences than previously suspected. In addition, we provide a simulation model to determine the number of colonies that are needed to maintain a certain number of sex alleles in a population, thereby providing useful guidelines for stingless bee breeding and conservation efforts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A dynamic systems simulation model of water resources was developed as a tool to help analyze alternatives to water resources management for the Piracicaba, Capivari and Jundiai River Water Basins (RB-PCJ), and used to run six 50-year simulations from 2004 to 2054. The model estimates water supply and demand, as well as contamination load by several consumers. Six runs were performed using a constant mean precipitation value, changing water supply and demand and different volumes diverted from RB-PCJ to RB-Alto Tiet. For the Business as Usual scenario, the Sustainability Index went from 0.44 in 2004 to 0.20 by 2054. The Water Sustainability Index changed from 74% in 2004 to 131% by 2054. The Falkenmark Index changed from 1,403 m(3) person (-aEuro parts per thousand 1) year (-aEuro parts per thousand 1) in 2004 to 734 m(3) person (-aEuro parts per thousand 1) year (-aEuro parts per thousand 1) by 2054. We concluded that sanitation is one of the major problems for the PCJ River Basins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Piracicaba, Capivari, and Jundiai River Basins (RB-PCJ) are mainly located in the State of So Paulo, Brazil. Using a dynamics systems simulation model (WRM-PCJ) to assess water resources sustainability, five 50-year simulations were run. WRM-PCJ was developed as a tool to aid decision and policy makers on the RB-PCJ Watershed Committee. The model has 254 variables. The model was calibrated and validated using available information from the 80s. Falkenmark Water Stress Index went from 1,403 m(3) person (-aEuro parts per thousand 1) year (-aEuro parts per thousand 1) in 2004 to 734 m(3) P (-aEuro parts per thousand 1) year (-aEuro parts per thousand 1) in 2054, and Xu Sustainability Index from 0.44 to 0.20. In 2004, the Keller River Basin Development Phase was Conservation, and by 2054 was Augmentation. The three criteria used to evaluate water resources showed that the watershed is at crucial water resources management turning point. The WRM-PCJ performed well, and it proved to be an excellent tool for decision and policy makers at RB-PCJ.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper provides insights into liquid free water dynamics in wood vessels based on Lattice Boltzmann experiments. The anatomy of real wood samples was reconstructed from systematic 3-D analyses of the vessel contours derived from successive microscopic images. This virtual vascular system was then used to supply fluid-solid boundary conditions to a two-phase Lattice Boltzmann scheme and investigate capillary invasion of this hydrophilic porous medium. Behavior of the liquid phase was strongly dependent on anatomical features, especially vessel bifurcations and reconnections. Various parameters were examined in numerical experiments with ideal vessel bifurcations, to clarify our interpretation of these features. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Atlantic Rain Forest, an important biodiversity hot spot, has faced severe habitat loss since the last century which has resulted in a highly fragmented landscape with a large number of small forest patches (<100 ha). For conservation planning it is essential to understand how current and future forest regeneration depends on ecological processes, fragment size and the connection to the regional seed pool. We have investigated the following questions by applying the forest growth simulation model FORMIND to the situation of the Atlantic Forest in the state of Sao Paulo, SE Brazil: (1) which set of parameters describing the local regeneration and level of density regulation can reproduce the biomass distribution and stem density of an old growth forest in a reserve? (2) Which additional processes apart from those describing the dynamics of an old growth forest, drive forest succession of small isolated fragments? (3) Which role does external seed input play during succession? Therefore, more than 300 tree species have been classified into nine plant functional types (PFTs), which are characterized by maximum potential height and shade tolerance. We differentiate between two seed dispersal modes: (i) local dispersal, i.e. all seedlings originated from fertile trees within the simulated area and (ii) external seed rain. Local seed dispersal has been parameterized following the pattern oriented approach, using biomass estimates of old growth forest. We have found that moderate density regulation is essential to achieve coexistence for a broad range of regeneration parameters. Considering the expected uncertainty and variability in the regeneration processes it is important that the forest dynamics are robust to variations in the regeneration parameters. Furthermore, edge effects such as increased mortality at the border and external seed rain have been necessary to reproduce the patterns for small isolated fragments. Overall, simulated biomass is much lower in the fragments compared to the continuous forest, whereas shade tolerant species are affected most strongly by fragmentation. Our simulations can supplement empirical studies by extrapolating local knowledge on edge effects of fragments to larger temporal and spatial scales. In particular our results show the importance of external seed rain and therefore highlight the importance of structural connectivity between regenerating fragments and mature forest stands. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The quantification of the available energy in the environment is important because it determines photosynthesis, evapotranspiration and, therefore, the final yield of crops. Instruments for measuring the energy balance are costly and indirect estimation alternatives are desirable. This study assessed the Deardorff's model performance during a cycle of a sugarcane crop in Piracicaba, State of São Paulo, Brazil, in comparison to the aerodynamic method. This mechanistic model simulates the energy fluxes (sensible, latent heat and net radiation) at three levels (atmosphere, canopy and soil) using only air temperature, relative humidity and wind speed measured at a reference level above the canopy, crop leaf area index, and some pre-calibrated parameters (canopy albedo, soil emissivity, atmospheric transmissivity and hydrological characteristics of the soil). The analysis was made for different time scales, insolation conditions and seasons (spring, summer and autumn). Analyzing all data of 15 minute intervals, the model presented good performance for net radiation simulation in different insolations and seasons. The latent heat flux in the atmosphere and the sensible heat flux in the atmosphere did not present differences in comparison to data from the aerodynamic method during the autumn. The sensible heat flux in the soil was poorly simulated by the model due to the poor performance of the soil water balance method. The Deardorff's model improved in general the flux simulations in comparison to the aerodynamic method when more insolation was available in the environment.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Currently there is a trend for the expansion of the area cropped with sugarcane (Saccharum officinarum L.), driven by an increase in the world demand for biofuels, due to economical, environmental, and geopolitical issues. Although sugarcane is traditionally harvested by burning dried leaves and tops, the unburned, mechanized harvest has been progressively adopted. The use of process based models is useful in understanding the effects of plant litter in soil C dynamics. The objective of this work was to use the CENTURY model in evaluating the effect of sugarcane residue management in the temporal dynamics of soil C. The approach taken in this work was to parameterize the CENTURY model for the sugarcane crop, to simulate the temporal dynamics of soil C, validating the model through field experiment data, and finally to make predictions in the long term regarding soil C. The main focus of this work was the comparison of soil C stocks between the burned and unburned litter management systems, but the effect of mineral fertilizer and organic residue applications were also evaluated. The simulations were performed with data from experiments with different durations, from 1 to 60 yr, in Goiana and Timbauba, Pernambuco, and Pradopolis, Sao Paulo, all in Brazil; and Mount Edgecombe, Kwazulu-Natal, South Africa. It was possible to simulate the temporal dynamics of soil C (R(2) = 0.89). The predictions made with the model revealed that there is, in the long term, a trend for higher soil C stocks with the unburned management. This increase is conditioned by factors such as climate, soil texture, time of adoption of the unburned system, and N fertilizer management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to the worldwide increase in demand for biofuels, the area cultivated with sugarcane is expected to increase. For environmental and economic reasons, an increasing proportion of the areas are being harvested without burning, leaving the residues on the soil surface. This periodical input of residues affects soil physical, chemical and biological properties, as well as plant growth and nutrition. Modeling can be a useful tool in the study of the complex interactions between the climate, residue quality, and the biological factors controlling plant growth and residue decomposition. The approach taken in this work was to parameterize the CENTURY model for the sugarcane crop, to simulate the temporal dynamics of aboveground phytomass and litter decomposition, and to validate the model through field experiment data. When studying aboveground growth, burned and unburned harvest systems were compared, as well as the effect of mineral fertilizer and organic residue applications. The simulations were performed with data from experiments with different durations, from 12 months to 60 years, in Goiana, TimbaA(0)ba and Pradpolis, Brazil; Harwood, Mackay and Tully, Australia; and Mount Edgecombe, South Africa. The differentiation of two pools in the litter, with different decomposition rates, was found to be a relevant factor in the simulations made. Originally, the model had a basically unlimited layer of mulch directly available for decomposition, 5,000 g m(-2). Through a parameter optimization process, the thickness of the mulch layer closer to the soil, more vulnerable to decomposition, was set as 110 g m(-2). By changing the layer of mulch at any given time available for decomposition, the sugarcane residues decomposition simulations where close to measured values (R (2) = 0.93), contributing to making the CENTURY model a tool for the study of sugarcane litter decomposition patterns. The CENTURY model accurately simulated aboveground carbon stalk values (R (2) = 0.76), considering burned and unburned harvest systems, plots with and without nitrogen fertilizer and organic amendment applications, in different climates and soil conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a method to simulate the Magnetic Barkhausen Noise using the Random Field Ising Model with magnetic long-range interaction. The method allows calculating the magnetic flux density behavior in particular sections of the lattice reticule. The results show an internal demagnetizing effect that proceeds from the magnetic long-range interactions. This demagnetizing effect induces the appearing of a magnetic pattern in the region of magnetic avalanches. When compared with the traditional method, the proposed numerical procedure neatly reduces computational costs of simulation. (c) 2008 Published by Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are several ways to attempt to model a building and its heat gains from external sources as well as internal ones in order to evaluate a proper operation, audit retrofit actions, and forecast energy consumption. Different techniques, varying from simple regression to models that are based on physical principles, can be used for simulation. A frequent hypothesis for all these models is that the input variables should be based on realistic data when they are available, otherwise the evaluation of energy consumption might be highly under or over estimated. In this paper, a comparison is made between a simple model based on artificial neural network (ANN) and a model that is based on physical principles (EnergyPlus) as an auditing and predicting tool in order to forecast building energy consumption. The Administration Building of the University of Sao Paulo is used as a case study. The building energy consumption profiles are collected as well as the campus meteorological data. Results show that both models are suitable for energy consumption forecast. Additionally, a parametric analysis is carried out for the considered building on EnergyPlus in order to evaluate the influence of several parameters such as the building profile occupation and weather data on such forecasting. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Water use and crop coefficient for hybrid DKB 390. This work aims to characterize the water use of maize hybrid DKB 390 under suitable conditions of irrigation for both sufficient and below-optimal situations of nitrogen supply. Crop coefficient values for different stages are also presented as a result, in order to provide the basis for crop water budget and management throughout the cycle. A field experiment was carried Out during the main season, in which biomass, soil moisture, leaf area, climate data and light transmittance were evaluated. These have allowed deriving water balance, use and efficiency. The mentioned genotype requires around 600 nun for high yield targets, being less efficient when led under below-optimal nitrogen fertilization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A time efficient optical model is proposed for GATE simulation of a LYSO scintillation matrix coupled to a photomultiplier. The purpose is to avoid the excessively long computation time when activating the optical processes in GATE. The usefulness of the model is demonstrated by comparing the simulated and experimental energy spectra obtained with the dual planar head equipment for dosimetry with a positron emission tomograph ( DoPET). The procedure to apply the model is divided in two steps. Firstly, a simplified simulation of a single crystal element of DoPET is used to fit an analytic function that models the optical attenuation inside the crystal. In a second step, the model is employed to calculate the influence of this attenuation in the energy registered by the tomograph. The use of the proposed optical model is around three orders of magnitude faster than a GATE simulation with optical processes enabled. A good agreement was found between the experimental and simulated data using the optical model. The results indicate that optical interactions inside the crystal elements play an important role on the energy resolution and induce a considerable degradation of the spectra information acquired by DoPET. Finally, the same approach employed by the proposed optical model could be useful to simulate a scintillation matrix coupled to a photomultiplier using single or dual readout scheme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations of LiCl center dot 6H(2)O Showed that the diffusion coefficient D, and also I lie structural relaxation time , follow a power law at high temperatures, D(-1) proportional to (T - T(0))(-mu), with the same experimental parameters for viscosity (T(0) = 207 K, mu = 2.08). Decoupling between D and occurs at T(x) similar to 1.1 T(0). High frequency acoustic excitations for the LiCl center dot 6H(2)O model were obtained by the calculation of time correlation functions of mass current fluctuations. The temperature dependence of the instantaneous shear modulus, G,(T), was considered in the shoving model for supercooled liquids [J.C. Dyre, T. Christensen, N.B. Olsen, J. Non-Cryst. Solids 352 (2006) 4635] resulting in a linear relationship log (D(-1)) vs. G root T. (C) 2009 Elsevier B.V. All rights reserved.