2 resultados para critical security studies

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[1] The retrieval of aerosol optical depth (Ta) over land by satellite remote sensing is still a challenge when a high spatial resolution is required. This study presents a tool that uses satellite measurements to dynamically identify the aerosol optical model that best represents the optical properties of the aerosol present in the atmosphere. We use aerosol critical reflectance to identify the single scattering albedo of the aerosol layer. Two case studies show that the Sao Paulo region can have different aerosol properties and demonstrates how the dynamic methodology works to identify those differences to obtain a better T a retrieval. The methodology assigned the high single scattering albedo aerosol model (pi o( lambda = 0.55) = 0.90) to the case where the aerosol source was dominated by biomass burning and the lower pi(o) model (pi(o) (lambda = 0.55) = 0.85) to the case where the local urban aerosol had the dominant influence on the region, as expected. The dynamic methodology was applied using cloud-free data from 2002 to 2005 in order to retrieve Ta with Moderate Resolution Imaging Spectroradiometer ( MODIS). These results were compared with collocated data measured by AERONET in Sao Paulo. The comparison shows better results when the dynamic methodology using two aerosol optical models is applied (slope 1.06 +/- 0.08 offset 0.01 +/- 0.02 r(2) 0.6) than when a single and fixed aerosol model is used (slope 1.48 +/- 0.11 and offset - 0.03 +/- 0.03 r(2) 0.6). In conclusion the dynamical methodology is shown to work well with two aerosol models. Further studies are necessary to evaluate the methodology in other regions and under different conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss potential caveats when estimating topologies of 3D brain networks from surface recordings. It is virtually impossible to record activity from all single neurons in the brain and one has to rely on techniques that measure average activity at sparsely located (non-invasive) recording sites Effects of this spatial sampling in relation to structural network measures like centrality and assortativity were analyzed using multivariate classifiers A simplified model of 3D brain connectivity incorporating both short- and long-range connections served for testing. To mimic M/EEG recordings we sampled this model via non-overlapping regions and weighted nodes and connections according to their proximity to the recording sites We used various complex network models for reference and tried to classify sampled versions of the ""brain-like"" network as one of these archetypes It was found that sampled networks may substantially deviate in topology from the respective original networks for small sample sizes For experimental studies this may imply that surface recordings can yield network structures that might not agree with its generating 3D network. (C) 2010 Elsevier Inc All rights reserved