3 resultados para cost estimating testing

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss potential caveats when estimating topologies of 3D brain networks from surface recordings. It is virtually impossible to record activity from all single neurons in the brain and one has to rely on techniques that measure average activity at sparsely located (non-invasive) recording sites Effects of this spatial sampling in relation to structural network measures like centrality and assortativity were analyzed using multivariate classifiers A simplified model of 3D brain connectivity incorporating both short- and long-range connections served for testing. To mimic M/EEG recordings we sampled this model via non-overlapping regions and weighted nodes and connections according to their proximity to the recording sites We used various complex network models for reference and tried to classify sampled versions of the ""brain-like"" network as one of these archetypes It was found that sampled networks may substantially deviate in topology from the respective original networks for small sample sizes For experimental studies this may imply that surface recordings can yield network structures that might not agree with its generating 3D network. (C) 2010 Elsevier Inc All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been great interest in deciding whether a combinatorial structure satisfies some property, or in estimating the value of some numerical function associated with this combinatorial structure, by considering only a randomly chosen substructure of sufficiently large, but constant size. These problems are called property testing and parameter testing, where a property or parameter is said to be testable if it can be estimated accurately in this way. The algorithmic appeal is evident, as, conditional on sampling, this leads to reliable constant-time randomized estimators. Our paper addresses property testing and parameter testing for permutations in a subpermutation perspective; more precisely, we investigate permutation properties and parameters that can be well approximated based on a randomly chosen subpermutation of much smaller size. In this context, we use a theory of convergence of permutation sequences developed by the present authors [C. Hoppen, Y. Kohayakawa, C.G. Moreira, R.M. Sampaio, Limits of permutation sequences through permutation regularity, Manuscript, 2010, 34pp.] to characterize testable permutation parameters along the lines of the work of Borgs et al. [C. Borgs, J. Chayes, L Lovasz, V.T. Sos, B. Szegedy, K. Vesztergombi, Graph limits and parameter testing, in: STOC`06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, ACM, New York, 2006, pp. 261-270.] in the case of graphs. Moreover, we obtain a permutation result in the direction of a famous result of Alon and Shapira [N. Alon, A. Shapira, A characterization of the (natural) graph properties testable with one-sided error, SIAM J. Comput. 37 (6) (2008) 1703-1727.] stating that every hereditary graph property is testable. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider consider the problem of dichotomizing a continuous covariate when performing a regression analysis based on a generalized estimation approach. The problem involves estimation of the cutpoint for the covariate and testing the hypothesis that the binary covariate constructed from the continuous covariate has a significant impact on the outcome. Due to the multiple testing used to find the optimal cutpoint, we need to make an adjustment to the usual significance test to preserve the type-I error rates. We illustrate the techniques on one data set of patients given unrelated hematopoietic stem cell transplantation. Here the question is whether the CD34 cell dose given to patient affects the outcome of the transplant and what is the smallest cell dose which is needed for good outcomes. (C) 2010 Elsevier BM. All rights reserved.