131 resultados para complex analytic signal
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A questão da magnetização remanescente na interpretação de anomalias magnéticas é frequentemente negligenciada, principalmente em função da dificuldade em se lidar com a mesma. Na maioria dos casos, tanto nos trabalhos acadêmicos quanto nos modelos que circulam nos meios profissionais da exploração mineral e de petróleo, assume-se que a magnetização remanescente é desprezível e utiliza-se apenas a induzida. O presente artigo mostra que o uso desse parâmetro é particularmente importante no tocante às anomalias magnéticas brasileiras, e procura fornecer subsídios para o uso desta informação. Discute-se o uso de duas técnicas consagradas, a Redução ao Pólo e o Sinal Analítico, em anomalias brasileiras com e sem magnetização remanescente. Mostramos a aplicação da técnica de determinação da magnetização total, permitindo que os modelos sejam construídos a partir da resultante da soma das magnetizações induzida e remanescente, e posteriormente apresentamos uma metodologia de uso da informação remanescente na datação das rochas fonte.
Resumo:
Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdos-Renyi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabasi-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree k variation, decreasing its network recovery rate with the increase of k. The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.
Resumo:
Real-time viscosity measurement remains a necessity for highly automated industry. To resolve this problem, many studies have been carried out using an ultrasonic shear wave reflectance method. This method is based on the determination of the complex reflection coefficient`s magnitude and phase at the solid-liquid interface. Although magnitude is a stable quantity and its measurement is relatively simple and precise, phase measurement is a difficult task because of strong temperature dependence. A simplified method that uses only the magnitude of the reflection coefficient and that is valid under the Newtonian regimen has been proposed by some authors, but the obtained viscosity values do not match conventional viscometry measurements. In this work, a mode conversion measurement cell was used to measure glycerin viscosity as a function of temperature (15 to 25 degrees C) and corn syrup-water mixtures as a function of concentration (70 to 100 wt% of corn syrup). Tests were carried out at 1 MHz. A novel signal processing technique that calculates the reflection coefficient magnitude in a frequency band, instead of a single frequency, was studied. The effects of the bandwidth on magnitude and viscosity were analyzed and the results were compared with the values predicted by the Newtonian liquid model. The frequency band technique improved the magnitude results. The obtained viscosity values came close to those measured by the rotational viscometer with percentage errors up to 14%, whereas errors up to 96% were found for the single frequency method.
Resumo:
Glucose and fructose fermentations by industrial yeasts strains are strongly affected by both the structural complexity of the nitrogen Source and the availability of oxygen. In this Study two Saccharomyces cerevisiae industrial wine strains were grown, under shaken and static conditions, in a media containing either a) 20% (w/v) glucose, or b) 10% (w/v) fructose and 10% (w/v) glucose or c) 20% (w/v) fructose, all supplemented with nitrogen Sources varying from a single ammonium salt (ammonium Sulfate) to free amino acids (casamino acids) and peptides (peptone). Data Suggest that 1 complex Structured nitrogen source is not submitted to the same control mechanisms as those involved in the utilization of simpler structured nitrogen Sources, and mutual interaction between carbon and nitrogen Sources, including the mechanisms involved ill the regulation of aerobic/anaerobic metabolism, may play in important role in defining yeast fermentation performance and the differing response to the structural complexity of the nitrogen Source, with a strong impact oil fermentation performance.
Resumo:
Purpose The purpose of this report was to demonstrate the normal complex insertional anatomy of the tibialis posterior tendon (TPT) in cadavers using magnetic resonance (MR) imaging with anatomic and histologic correlation. Material and methods Ten cadaveric ankles were used according to institutional guidelines. MR T1-weighted spin echo imaging was performed to demonstrate aspects of the complex anatomic distal insertions of the TPT in cadaveric specimens. Findings on MR imaging were correlated with those derived from anatomic and histologic study. Reults Generally, the TPT revealed a low signal in all MR images, except near the level of the medial malleolus, where the TPT suddenly changed direction and ""magic angle"" artifact could be observed. In five out of ten specimens (50%), a type I accessory navicular bone was found in the TPT. In all cases with a type I accessory navicular bone, the TPT had an altered signal in this area. Axial and coronal planes on MR imaging were the best in identifying the distal insertions of the TPT. A normal division of the TPT was observed just proximal to the insertion into the navicular bone in five specimens (100%) occurring at a maximum proximal distance from its attachment to the navicular bone of approximately 1.5 to 2 cm. In the other five specimens, in which a type I accessory navicular bone was present, the TPT directly inserted into the accessory bone and a slip less than 1.5 mm in thickness could be observed attaching to the medial aspect of the navicular bone (100%). Anatomic inspection confirmed the sites of the distal insertions of the components of the TPT. Conclusion MR imaging enabled detailed analysis of the complex distal insertions of the TPT as well as a better understanding of those features of its insertion that can simulate a lesion.
Resumo:
Objective Intrasubstance meniscal signal changes not reaching the articular surface on fast spin echo (FSE) sequences are considered to represent mucoid degeneration on MRI. The aim of this study was to evaluate the association of prevalent intrasubstance signal changes with incident tears of the medial meniscus detected on 3.0 T MRI over a 1-year period. Materials and methods A total of 161 women aged a parts per thousand yen40 years participated in a longitudinal 1-year observational study of knee osteoarthritis. MRI (3.0 T) was performed at baseline and 12-month follow-up. The anterior horn, body, and posterior horn of the medial meniscus were scored by two experienced musculoskeletal radiologists using the Boston-Leeds Osteoarthritis Knee Score (BLOKS) system. Four grades were used to describe the meniscal morphology: grade 0 (normal), grade 1 (intrasubstance signal changes not reaching the articular surface), grade 2 (single tears), and grade 3 (complex tears and maceration). Fisher`s exact test and the Cochran-Armitage trend test were performed to evaluate whether baseline intrasubstance signal changes (grade 1) predict incident meniscal tears/maceration (grades 2 and/or 3) in the same subregion of the medial meniscus, when compared to subregions without pathology as the reference group (grade 0). Results Medial meniscal intrasubstance signal changes at baseline did not predict tears at follow-up when evaluating the anterior and posterior horns (left-sided p-values 0.06 and 0.59, respectively). No incident tears were detected in the body. Conclusion We could not demonstrate an association between prevalent medial meniscal intrasubstance signal changes with incident tears over a 1-year period.
Resumo:
Melanin granule (melanosome) dispersion within Xenopus laevis melanophores is evoked either by light or alpha-MSH. We have previously demonstrated that the initial biochemical steps of light and alpha-MSH signaling are distinct, since the increase in cAMP observed in response to alpha-MSH was not seen after light exposure. cAMP concentrations in response to alpha-MSH were significantly lower in cells pre-exposed to light as compared to the levels in dark-adapted melanophores. Here we demonstrate the presence of an adenylyl cyclase (AC) in the Xenopus melanophore, similar to the mammalian type IX which is inhibited by Ca(2+)-calmodulin-activated phosphatase. This finding supports the hypothesis that the cyclase could be negatively modulated by a light-promoted Ca(2+) increase. In fact, the activity of calcineurin PP2B phosphatase was increased by light, which could result in AC IX inhibition, thus decreasing the response to alpha-MSH. St-Ht31, a disrupting agent of protein kinase A (PKA)-anchoring kinase A protein (AKAP) complex totally blocked the melanosome dispersing response to alpha-MSH, but did not impair the photo-response in Xenopus melanophores. Sequence comparison of a melanophore AKAP partial clone with GenBank sequences showed that the anchoring protein was a gravin-like adaptor previously sequenced from Xenopus non-pigmentary tissues. Co-immunoprecipitation of Xenopus AKAP and the catalytic subunit of PKA demonstrated that PKA is associated with AKAP and it is released in the presence of alpha-MSH. We conclude that in X laevis melanophores, AKAP12 (gravin-like) contains a site for binding the inactive PKA thus compartmentalizing PKA signaling and also possesses binding sites for PKC. Light diminishes alpha-MSH-induced increase of cAMP by increasing calcineurin (PP2B) activity, which in turn inhibits adenylyl cyclase type IX, and/or by activating PKC, which phosphorylates the gravin-like molecule, thus destabilizing its binding to the cell membrane. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We consider real analytic involutive structures V, of co-rank one, defined on a real analytic paracompact orientable manifold M. To each such structure we associate certain connected subsets of M which we call the level sets of V. We prove that analytic regularity propagates along them. With a further assumption on the level sets of V we characterize the global analytic hypoellipticity of a differential operator naturally associated to V. As an application we study a case of tube structures.
Resumo:
Low-Density Lipoprotein (LDL), often known as ""bad cholesterol"" is one of the responsible to increase the risk of coronary arterial diseases. For this reason, the cholesterol present in the LDL particle has become one of the main parameters to be quantified in routine clinical diagnosis. A number of tools are available to assess LDL particles and estimate the cholesterol concentration in the blood. The most common methods to quantify the LDL in the plasma are the density gradient ultracentrifugation and nuclear magnetic resonance (NMR). However, these techniques require special equipments and can take a long time to provide the results. In this paper, we report on the increase of the Europium emission in Europium-oxytetracycline complex aqueous solutions in the presence of LDL. This increase is proportional to the LDL concentration in the solution. This phenomenum can be used to develop a method to quantify the number of LDL particles in a sample. A comparison between the performances of the oxytetracycline and the tetracycline in the complexes is also made.
Resumo:
One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants.
Resumo:
RpfG is a paradigm for a class of widespread bacterial two-component regulators with a CheY-like receiver domain attached to a histidine-aspartic acid-glycine-tyrosine-proline (HD-GYP) cyclic di-GMP phosphodiesterase domain. In the plant pathogen Xanthomonas campestris pv. campestris (Xcc), a two-component system comprising RpfG and the complex sensor kinase RpfC is implicated in sensing and responding to the diffusible signaling factor (DSF), which is essential for cell-cell signaling. RpfF is involved in synthesizing DSF, and mutations of rpfF, rpfG, or rpfC lead to a coordinate reduction in the synthesis of virulence factors such as extracellular enzymes, biofilm structure, and motility. Using yeast two-hybrid analysis and fluorescence resonance energy transfer experiments in Xcc, we show that the physical interaction of RpfG with two proteins with diguanylate cyclase (GGDEF) domains controls a subset of RpfG-regulated virulence functions. RpfG interactions were abolished by alanine substitutions of the three residues of the conserved GYP motif in the HD-GYP domain. Changing the GYP motif or deletion of the two GGDEF-domain proteins reduced Xcc motility but not the synthesis of extracellular enzymes or biofilm formation. RpfG-GGDEF interactions are dynamic and depend on DSF signaling, being reduced in the rpfF mutant but restored by DSF addition. The results are consistent with a model in which DSF signal transduction controlling motility depends on a highly regulated, dynamic interaction of proteins that influence the localized expression of cyclic di-GMP.
Resumo:
This paper describes the case of a 12-year-old male patient who presented a severe lateral luxation of the maxillary central incisors due to a bicycle fall. Treatment involved suture of the soft tissues lacerations, and repositioning and splinting of the injured teeth, followed by endodontic treatment and periodontal surgery. After a 2-year follow-up, clinical and radiographic evaluation revealed that the incisors presented satisfactory esthetic and functional demands.
Resumo:
In Brazil, the Laurencia complex is represented by twenty taxa: Laurencia s.s. with twelve species, Palisada with four species (including Chondrophycus furcatus now that the proposal of its transference to Palisada is in process), and Osmundea and Yuzurua with two species each. The majority of the Brazilian species of the Laurencia complex have been phylogenetically analyzed by 54 rbcL sequences, including five other Rhodomelacean species as outgroups. The analysis showed that the Laurencia complex is monophyletic with high posterior probability value. The complex was separated into five clades, corresponding to the genera: Chondrophycus, Laurencia, Osmundea, Palisada, and Yuzurua. A bibliographical survey of the terpenoids produced by Brazilian species showed that only six species of Laurencia and five of Palisada (including C. furcatcus) have been submitted to chemical analysis with 48 terpenoids (47 sesquiterpenes and one triterpene) isolated. No diterpenes were found. Of the total, 23 sesquiterpenes belong to the bisabolane class and eighteen to the chamigrene type, whose biochemical precursor is bisabolane, two are derived from lauranes and four are triquinols. Despite the considerable number of known terpenes and their ecological and pharmacological importance, few experimental biological studies have been performed. In this review, only bioactivities related to human health were considered.
Resumo:
Four populations of Astyanax hastatus Myers 1928 from the Guapimirim River basin (Rio de Janeiro State) were analyzed and three distinct cytotypes identified. These cytotypes presented 2n = 50 chromosomes, with 4M+8SM+10ST+28A (Cytotype A), 8M+10SM+14ST+18A (Cytotype B), 6M+8SM+4ST+32A (Cytotype C) and scanty heterochromatin, mainly located throughout pericentromeric regions of several chromosomal pairs. No homologies with the As-51 satellite DNA were observed in the three cytotypes, although all of them presented multiple 18S rDNA sites, as detected by both silver nitrate staining and FISH (fluorescent in situ hybridization). The application of the term "species complex" in Astyanax is discussed from a cytotaxonomic viewpoint.
Resumo:
A Organização Mundial da Saúde (OMS) reiterou recentemente que o consumo de dietas inadequadas e a inatividade física estão entre os dez principais fatores de mortalidade. Diversos ensaios aleatorizados demonstram que intervenções alimentares adequadas podem diminuir ou prevenir significativamente o aparecimento de várias doenças crônicas não transmissíveis. Neste contexto, o papel da dieta vem sendo exaustivamente avaliado em estudos clínicos e epidemiológicos. Assim, já foi bem estabelecido na literatura que a quantidade e o tipo de gordura alimentar exercem influência direta sobre fatores de risco cardiovascular, tais como a concentração de lípides e de lipoproteínas plasmáticas, bem como sua associação a processos inflamatórios. Os ácidos graxos participam de complexos sistemas de sinalização intracelular, função que vem sendo bastante explorada. Os ácidos graxos poli-insaturados não somente influenciam a composição das membranas, metabolismo celular e sinais de tradução, mas também modulam a expressão de genes, regulando a atividade e a produção de diversos fatores de transcrição. A proposta deste artigo é rever tópicos relevantes referentes ao metabolismo de lípides e os relacionar a terapias nutricionais que possam contribuir para a prevenção e o tratamento de doenças associadas.