4 resultados para competencia imperfecta
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Osteogenesis imperfecta is a heterogeneous genetic disorder characterized by bone fragility and deformity, recurrent fractures, blue sclera, short stature, and dentinogenesis imperfecta. Most cases are caused by mutations in COL1A1 and COL1A2 genes. We present a novel splicing mutation in the COL1A1 gene (c. 1875+ 1G>C) in a 16-year-old Brazilian boy diagnosed as a type III osteogenesis imperfecta patient. This splicing mutation and its association with clinical phenotypes will be submitted to the reference database of COL1A1 mutations, which has no other description of this mutation.
Resumo:
Background. Osteogenesis imperfecta (OI), also known as ""brittle bone disease,"" can be difficult to diagnose in its mild form. The authors describe a clinical case of a diagnosis of dentinogenesis imperfecta (DI), In which a literature review combined with an analysis of dental alterations led to indications of OI involvement. Case Description. Since DI can be associated with OI, the authors reviewed correlated studies and obtained a new medical history from the patient. They then conducted a radiographic and clinical examination of the dentition and submitted an affected third molar to scanning electron microscopy analysis. They compared their findings with descriptions of OI type I dental alterations in the literature and confirmed their diagnosis by means of a medical evaluation. Clinical Implications. In cases in which DI is diagnosed, patients should be examined carefully and the occurrence of OI should be considered `since, in its mild form, it might be misdiagnosed.
Resumo:
Matricellular proteins play a unique role in the skeleton as regulators of bone remodeling, and the matricellular protein osteonectin (SPARC, BM-40) is the most abundant non-collagenous protein in bone In. the absence of osteonectin, mice develop progressive low turnover osteopenia, particularly affecting trabecular bone. Polymorphisms in a regulatory region of the osteonectin gene are associated with bone mass in a subset of idiopathic osteoporosis patients, and these polymorphisms likely regulate osteonectin expression. Thus it is important to determine how osteonectin gene dosage affects skeletal function. Moreover, intermittent administration of parathyroid hormone (PTH) (1-34) is the only anabolic therapy approved for the treatment of osteoporosis, and it is critical to understand how modulators of bone remodeling, such as osteonectin, affect skeletal response to anabolic agents. In this study, 10 week old female wild type, osteonectin-haploinsufficient, and osteonectin-null mice (C57Bl/6 genetic background) were given 80 mu g/kg body weight/day PTH(1-34) for 4 weeks. Osteonectin gene dosage had a profound effect on bone microarchitecture. The connectivity density of trabecular bone in osteonectin-haploinsufficient mice was substantially decreased compared with that of wild type mice, suggesting compromised mechanical properties. Whereas mice of each genotype had a similar osteoblastic response to PTH treatment, the osteoclastic response was accentuated in osteonectin-haploinsufficient and osteonectin-null mice. Eroded surface and osteoclast number were significantly higher in PTH-treated osteonectin-null mice, as was endosteal area. In vitro studies confirmed that PTH induced the formation of more osteoclast-like cells in marrow from osteonectin-null mice compared with wild type. PTH treated osteonectin-null bone marrow cells expressed more RANKL mRNA compared with wild type. However, the ratio of RANKL:OPG mRNA was somewhat lower in PTH treated osteonectin-null cultures. Increased expression of RANKL in response to PTH could contribute to the accentuated osteoclastic response in osteonectin(-/-) mice, but other mechanisms are also likely to be involved. The molecular mechanisms by which PTH elicits bone anabolic vs. bone catabolic effects remain poorly understood. Our results imply that osteonectin levels may play a role in modulating the balance of bone formation and resorption in response to PTH. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective: Variations in genes that are critical for tooth formation may contribute to the tooth agenesis. MMPs are potential candidate genes for dental alterations based on the roles they play during embryogenesis. The aim of this study was to investigate the possible association between MMP1, MMP3, and MMP20 and tooth agenesis. Methods: One hundred sixty-seven nuclear families from two different populations were analysed, 116 from Brazil and 51 from Turkey. Probands had at least one congenitally missing tooth. DNA samples were obtained from blood or saliva samples and genotyping was performed using TagMan chemistry. In addition, Mmp20 was selected for quantitative real-time polymerase chain reaction analysis with SYBR Green I Dye in mouse tooth development. Results: Associations between tooth agenesis and MMP1 (p = 0.007), and MMP20 (p = 0.03) were found in Brazilian families. In the total dataset, MMP20 continued to be associated with tooth agenesis (p = 0.01). Mmp20 was not expressed during the initial stages of tooth development. Conclusion: Our findings provide evidence that MMP1 and MMP20 play a role in human tooth agenesis. (C) 2010 Elsevier Ltd. All rights reserved.