79 resultados para clonal selection algorithm
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Age-related changes in running kinematics have been reported in the literature using classical inferential statistics. However, this approach has been hampered by the increased number of biomechanical gait variables reported and subsequently the lack of differences presented in these studies. Data mining techniques have been applied in recent biomedical studies to solve this problem using a more general approach. In the present work, we re-analyzed lower extremity running kinematic data of 17 young and 17 elderly male runners using the Support Vector Machine (SVM) classification approach. In total, 31 kinematic variables were extracted to train the classification algorithm and test the generalized performance. The results revealed different accuracy rates across three different kernel methods adopted in the classifier, with the linear kernel performing the best. A subsequent forward feature selection algorithm demonstrated that with only six features, the linear kernel SVM achieved 100% classification performance rate, showing that these features provided powerful combined information to distinguish age groups. The results of the present work demonstrate potential in applying this approach to improve knowledge about the age-related differences in running gait biomechanics and encourages the use of the SVM in other clinical contexts. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The continuous growth of peer-to-peer networks has made them responsible for a considerable portion of the current Internet traffic. For this reason, improvements in P2P network resources usage are of central importance. One effective approach for addressing this issue is the deployment of locality algorithms, which allow the system to optimize the peers` selection policy for different network situations and, thus, maximize performance. To date, several locality algorithms have been proposed for use in P2P networks. However, they usually adopt heterogeneous criteria for measuring the proximity between peers, which hinders a coherent comparison between the different solutions. In this paper, we develop a thoroughly review of popular locality algorithms, based on three main characteristics: the adopted network architecture, distance metric, and resulting peer selection algorithm. As result of this study, we propose a novel and generic taxonomy for locality algorithms in peer-to-peer networks, aiming to enable a better and more coherent evaluation of any individual locality algorithm.
Resumo:
This paper presents the formulation of a combinatorial optimization problem with the following characteristics: (i) the search space is the power set of a finite set structured as a Boolean lattice; (ii) the cost function forms a U-shaped curve when applied to any lattice chain. This formulation applies for feature selection in the context of pattern recognition. The known approaches for this problem are branch-and-bound algorithms and heuristics that explore partially the search space. Branch-and-bound algorithms are equivalent to the full search, while heuristics are not. This paper presents a branch-and-bound algorithm that differs from the others known by exploring the lattice structure and the U-shaped chain curves of the search space. The main contribution of this paper is the architecture of this algorithm that is based on the representation and exploration of the search space by new lattice properties proven here. Several experiments, with well known public data, indicate the superiority of the proposed method to the sequential floating forward selection (SFFS), which is a popular heuristic that gives good results in very short computational time. In all experiments, the proposed method got better or equal results in similar or even smaller computational time. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: The malaria parasite Plasmodium falciparum exhibits abundant genetic diversity, and this diversity is key to its success as a pathogen. Previous efforts to study genetic diversity in P. falciparum have begun to elucidate the demographic history of the species, as well as patterns of population structure and patterns of linkage disequilibrium within its genome. Such studies will be greatly enhanced by new genomic tools and recent large-scale efforts to map genomic variation. To that end, we have developed a high throughput single nucleotide polymorphism (SNP) genotyping platform for P. falciparum. Results: Using an Affymetrix 3,000 SNP assay array, we found roughly half the assays (1,638) yielded high quality, 100% accurate genotyping calls for both major and minor SNP alleles. Genotype data from 76 global isolates confirm significant genetic differentiation among continental populations and varying levels of SNP diversity and linkage disequilibrium according to geographic location and local epidemiological factors. We further discovered that nonsynonymous and silent (synonymous or noncoding) SNPs differ with respect to within-population diversity, interpopulation differentiation, and the degree to which allele frequencies are correlated between populations. Conclusions: The distinct population profile of nonsynonymous variants indicates that natural selection has a significant influence on genomic diversity in P. falciparum, and that many of these changes may reflect functional variants deserving of follow-up study. Our analysis demonstrates the potential for new high-throughput genotyping technologies to enhance studies of population structure, natural selection, and ultimately enable genome-wide association studies in P. falciparum to find genes underlying key phenotypic traits.
Resumo:
Context tree models have been introduced by Rissanen in [25] as a parsimonious generalization of Markov models. Since then, they have been widely used in applied probability and statistics. The present paper investigates non-asymptotic properties of two popular procedures of context tree estimation: Rissanen's algorithm Context and penalized maximum likelihood. First showing how they are related, we prove finite horizon bounds for the probability of over- and under-estimation. Concerning overestimation, no boundedness or loss-of-memory conditions are required: the proof relies on new deviation inequalities for empirical probabilities of independent interest. The under-estimation properties rely on classical hypotheses for processes of infinite memory. These results improve on and generalize the bounds obtained in Duarte et al. (2006) [12], Galves et al. (2008) [18], Galves and Leonardi (2008) [17], Leonardi (2010) [22], refining asymptotic results of Buhlmann and Wyner (1999) [4] and Csiszar and Talata (2006) [9]. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates how to make improved action selection for online policy learning in robotic scenarios using reinforcement learning (RL) algorithms. Since finding control policies using any RL algorithm can be very time consuming, we propose to combine RL algorithms with heuristic functions for selecting promising actions during the learning process. With this aim, we investigate the use of heuristics for increasing the rate of convergence of RL algorithms and contribute with a new learning algorithm, Heuristically Accelerated Q-learning (HAQL), which incorporates heuristics for action selection to the Q-Learning algorithm. Experimental results on robot navigation show that the use of even very simple heuristic functions results in significant performance enhancement of the learning rate.
Resumo:
Background: Although various techniques have been used for breast conservation surgery reconstruction, there are few studies describing a logical approach to reconstruction of these defects. The objectives of this study were to establish a classification system for partial breast defects and to develop a reconstructive algorithm. Methods: The authors reviewed a 7-year experience with 209 immediate breast conservation surgery reconstructions. Mean follow-up was 31 months. Type I defects include tissue resection in smaller breasts (bra size A/B), including type IA, which involves minimal defects that do not cause distortion; type III, which involves moderate defects that cause moderate distortion; and type IC, which involves large defects that cause significant deformities. Type II includes tissue resection in medium-sized breasts with or without ptosis (bra size C), and type III includes tissue resection in large breasts with ptosis (bra size D). Results: Eighteen percent of patients presented type I, where a lateral thoracodorsal flap and a latissimus dorsi flap were performed in 68 percent. Forty-five percent presented type II defects, where bilateral mastopexy was performed in 52 percent. Thirty-seven percent of patients presented type III distortion, where bilateral reduction mammaplasty was performed in 67 percent. Thirty-five percent of patients presented complications, and most were minor. Conclusions: An algorithm based on breast size in relation to tumor location and extension of resection can be followed to determine the best approach to reconstruction. The authors` results have demonstrated that the complications were similar to those in other clinical series. Success depends on patient selection, coordinated planning with the oncologic surgeon, and careful intraoperative management.
Resumo:
Background Imunoglobulin (Ig) and T cell receptor (TCR) gene rearrangements function as specific markers for minimal residual disease (MRD) which is one of the best predictors of outcome in childhood acute lymphoblastic leukemia (ALL) We recently reported on the prognostic value of MRD during the induction of remission through a simplified PCR method Here we report on gene rearrangement frequencies and offer guidelines for the application of the technique Procedure Two hundred thirty three children had DNA extracted from bone marrow Ig and TCR gene rearrangements were amplified using consensus primers and conventional PCR PCR products were submitted to homo/heteroduplex analysis A computer program was designed to define combinations of targets for clonal detection using a minimum set of primers and reactions Results At least one clonal marker could be detected in 98% of the patients and two markers in approximately 80% The most commonly rear ringed genes in precursor B cell ALL were IgH (75%) TCRD (59%) IgK (55%), and TCRG (54%) The most commonly rearranged genes for TALL were TCRG (100%) and TCRD (24%) The sensitivity of primers was limited to the detection of 1 leukemic cell among 100 normal cells Conclusions We propose that eight PCR reactions per ALL subtype would allow for the detection of two markers in most cases In addition these reactions ire suitable for MRD monitoring especially when aiming the selection of patients with high MRD levels (>= 10(-2)) at the end of induction therapy Such an approach would be very useful in centers with limited financial resources Pediatr Blood Cancer 2010 55 1278-1286 (C) 2010 Wiley Liss Inc
Resumo:
This paper proposes a filter-based algorithm for feature selection. The filter is based on the partitioning of the set of features into clusters. The number of clusters, and consequently the cardinality of the subset of selected features, is automatically estimated from data. The computational complexity of the proposed algorithm is also investigated. A variant of this filter that considers feature-class correlations is also proposed for classification problems. Empirical results involving ten datasets illustrate the performance of the developed algorithm, which in general has obtained competitive results in terms of classification accuracy when compared to state of the art algorithms that find clusters of features. We show that, if computational efficiency is an important issue, then the proposed filter May be preferred over their counterparts, thus becoming eligible to join a pool of feature selection algorithms to be used in practice. As an additional contribution of this work, a theoretical framework is used to formally analyze some properties of feature selection methods that rely on finding clusters of features. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The network of HIV counseling and testing centers in São Paulo, Brazil is a major source of data used to build epidemiological profiles of the client population. We examined HIV-1 incidence from November 2000 to April 2001, comparing epidemiological and socio-behavioral data of recently-infected individuals with those with long-standing infection. A less sensitive ELISA was employed to identify recent infection. The overall incidence of HIV-1 infection was 0.53/100/year (95% CI: 0.31-0.85/100/year): 0.77/100/year for males (95% CI: 0.42-1.27/100/year) and 0.22/100/ year (95% CI: 0.05-0.59/100/year) for females. Overall HIV-1 prevalence was 3.2% (95% CI: 2.8-3.7%), being 4.0% among males (95% CI: 3.3-4.7%) and 2.1% among females (95% CI: 1.6-2.8%). Recent infections accounted for 15% of the total (95% CI: 10.2-20.8%). Recent infection correlated with being younger and male (p = 0.019). Therefore, recent infection was more common among younger males and older females.
Resumo:
Forty-nine typical and atypical enteropathogenic Escherichia coli (EPEC) strains belonging to different serotypes and isolated from humans, pets (cats and dogs), farm animals (bovines, sheep, and rabbits), and wild animals (monkeys) were investigated for virulence markers and clonal similarity by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The virulence markers analyzed revealed that atypical EPEC strains isolated from animals have the potential to cause diarrhea in humans. A close clonal relationship between human and animal isolates was found by MLST and PFGE. These results indicate that these animals act as atypical EPEC reservoirs and may represent sources of infection for humans. Since humans also act as a reservoir of atypical EPEC strains, the cycle of mutual infection of atypical EPEC between animals and humans, mainly pets and their owners, cannot be ruled out since the transmission dynamics between the reservoirs are not yet clearly understood.
Resumo:
This work develops a method for solving ordinary differential equations, that is, initial-value problems, with solutions approximated by using Legendre's polynomials. An iterative procedure for the adjustment of the polynomial coefficients is developed, based on the genetic algorithm. This procedure is applied to several examples providing comparisons between its results and the best polynomial fitting when numerical solutions by the traditional Runge-Kutta or Adams methods are available. The resulting algorithm provides reliable solutions even if the numerical solutions are not available, that is, when the mass matrix is singular or the equation produces unstable running processes.
Resumo:
Grapholita molesta (Lepidoptera: Tortricidae) is one of the main pests of peach trees in Brazil, causing fruit losses of 3-5%. Among possible biological control agents, Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) has been found in peach orchards. Our objectives were to study the rearing of T pretiosum in eggs of G. molesta and Anagasta kuehniella (Lepidoptera: Pyralidae), and select lineages of this parasitoid that have the potential to control G. molesta. Selection of best lineages was made from 5 populations of T pretiosum collected from organically-cultivated peach orchards. The study was done under controlled temperature (25 +/- 2 degrees C), relative humidity (70 +/- 10%) and 14:10 h (light:dark) photoperiod conditions. Grapholita molesta eggs were found to be adequate hosts for the development of T pretiosum, and the parameters for number of parasitized eggs, percent parasitized eggs, and sex ratio were similar to those for A. kuehniella eggs. The highest rate of parasitism of G. molesta eggs occurred in eggs with up to 48 h of embryonic development. Among the lineages of T pretiosum that were collected, HO8, PO8, PEL, and L3M showed the best biological performance and are therefore indicated for semi-field and field studies for biological control of oriental fruit moth.
Resumo:
Background: The criteria and timing for nerve surgery in infants with obstetric brachial plexopathy remain controversial. Our aim was to develop a new method for early prognostic assessment to assist this decision process. Methods: Fifty-four patients with unilateral obstetric brachial plexopathy who were ten to sixty days old underwent bilateral motor-nerve-conduction studies of the axillary, musculocutaneous, proximal radial, distal radial, median, and ulnar nerves. The ratio between the amplitude of the compound muscle action potential of the affected limb and that of the healthy side was called the axonal viability index. The patients were followed and classified in three groups according to the clinical outcome. We analyzed the receiver operating characteristic curve of each index to define the best cutoff point to detect patients with a poor recovery. Results: The best cutoff points on the axonal viability index for each nerve (and its sensitivity and specificity) were <10% (88% and 89%, respectively) for the axillary nerve, 0% (88% and 73%) for the musculocutaneous nerve, <20% (82% and 97%) for the proximal radial nerve, <50% (82% and 97%) for the distal radial nerve, and <50% (59% and 97%) for the ulnar nerve. The indices from the proximal radial, distal radial, and ulnar nerves had better specificities compared with the most frequently used clinical criterion: absence of biceps function at three months of age. Conclusions: The axonal viability index yields an earlier and more specific prognostic estimation of obstetric brachial plexopathy than does the clinical criterion of biceps function, and we believe it may be useful in determining surgical indications in these patients.
Resumo:
Background: Considering the broad variation in the expression of housekeeping genes among tissues and experimental situations, studies using quantitative RT-PCR require strict definition of adequate endogenous controls. For glioblastoma, the most common type of tumor in the central nervous system, there was no previous report regarding this issue. Results: Here we show that amongst seven frequently used housekeeping genes TBP and HPRT1 are adequate references for glioblastoma gene expression analysis. Evaluation of the expression levels of 12 target genes utilizing different endogenous controls revealed that the normalization method applied might introduce errors in the estimation of relative quantities. Genes presenting expression levels which do not significantly differ between tumor and normal tissues can be considered either increased or decreased if unsuitable reference genes are applied. Most importantly, genes showing significant differences in expression levels between tumor and normal tissues can be missed. We also demonstrated that the Holliday Junction Recognizing Protein, a novel DNA repair protein over expressed in lung cancer, is extremely over-expressed in glioblastoma, with a median change of about 134 fold. Conclusion: Altogether, our data show the relevance of previous validation of candidate control genes for each experimental model and indicate TBP plus HPRT1 as suitable references for studies on glioblastoma gene expression.