2 resultados para climatic effects
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The increase in biodiversity from high to low latitudes is a widely recognized biogeographical pattern. According to the latitudinal gradient hypothesis (LGH), this pattern was shaped by differential effects of Late Quaternary climatic changes across a latitudinal gradient. Here, we evaluate the effects of climatic changes across a tropical latitudinal gradient and its implications to diversification of an Atlantic Forest (AF) endemic passerine. We studied the intraspecific diversification and historical demography of Sclerurus scansor, based on mitochondrial (ND2, ND3 and cytb) and nuclear (FIB7) gene sequences. Phylogenetic analyses recovered three well-supported clades associated with distinct latitudinal zones. Coalescent-based methods were applied to estimate divergence times and changes in effective population sizes. Estimates of divergence times indicate that intraspecific diversification took place during Middle-Late Pleistocene. Distinct demographic scenarios were identified, with the southern lineage exhibiting a clear signature of demographic expansion, while the central one remained more stable. The northern lineage, contrasting with LGH predictions, exhibited a clear sign of a recent bottleneck. Our results suggest that different AF regions reacted distinctly, even in opposite ways, under the same climatic period, producing simultaneously favourable scenarios for isolation and contact among populations.
Resumo:
1. Litter decomposition recycles nutrients and causes large fluxes of carbon dioxide into the atmosphere. It is typically assumed that climate, litter quality and decomposer communities determine litter decay rates, yet few comparative studies have examined their relative contributions in tropical forests. 2. We used a short-term litterbag experiment to quantify the effects of litter quality, placement and mesofaunal exclusion on decomposition in 23 tropical forests in 14 countries. Annual precipitation varied among sites (760-5797 mm). At each site, two standard substrates (Raphia farinifera and Laurus nobilis) were decomposed in fine- and coarse-mesh litterbags both above and below ground for approximately 1 year. 3. Decomposition was rapid, with >95% mass loss within a year at most sites. Litter quality, placement and mesofaunal exclusion all independently affected decomposition, but the magnitude depended upon site. Both the average decomposition rate at each site and the ratio of above- to below-ground decay increased linearly with annual precipitation, explaining 60-65% of among-site variation. Excluding mesofauna had the largest impact on decomposition, reducing decomposition rates by half on average, but the magnitude of decrease was largely independent of climate. This suggests that the decomposer community might play an important role in explaining patterns of decomposition among sites. Which litter type decomposed fastest varied by site, but was not related to climate. 4. Synthesis. A key goal of ecology is to identify general patterns across ecological communities, as well as relevant site-specific details to understand local dynamics. Our pan-tropical study shows that certain aspects of decomposition, including average decomposition rates and the ratio of above- to below-ground decomposition are highly correlated with a simple climatic index: mean annual precipitation. However, we found no relationship between precipitation and effects of mesofaunal exclusion or litter type, suggesting that site-specific details may also be required to understand how these factors affect decomposition at local scales.