3 resultados para choroidal neovascularization
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Endostatin (ES) is a potent inhibitor of angiogenesis and tumor growth. Continuous ES delivery of ES improves the efficacy and potency of the antitumoral therapy. The TheraCyte (R) system is a polytetrafluoroethylene (PTFE) semipermeable membrane macroencapsulation system for implantation of genetically engineered cells specially designed for the in vivo delivery of therapeutic proteins, such as ES, which circumvents the problem of limited half-life and variation in circulating levels. In order to enable neovascularization at the tissues adjacent to the devices prior to ES secretion by the cells inside them, we designed a scheme in which empty TheraCyte (R) devices were preimplanted SC into immunodeficient mice. Only after healing (17 days later) were Chinese hamster ovary cells expressing ES injected into the preimplanted devices. In another model for device implantation, the cells expressing ES where loaded into the immunoisolation devices prior to implantation into the animals, and the TheraCyte (R) were then immediately implanted SC into the mice. Throughout the 2-month study, constant high ES levels of up to 3.7 mu g/ml were detected in the plasma of the mice preimplanted with the devices, while lower but also constant levels of ES (up to 2.1 mu g/ml plasma) were detected in the mice that had received devices preloaded with the ES-expressing cells. Immunohistochemistry using anti-ES antibody showed reaction within the device and outside it, demonstrating that ES, secreted by the confined recombinant cells, permeated through the membrane and reached the surrounding tissues.
Resumo:
Purpose: To evaluate the microvessel density by comparing the performance of anti-factor VIII-related antigen, anti-CD31 and, anti-CD34 monoclonal antibodies in breast cancer. Methods: Twenty-three postmenopausal women diagnosed with Stage II breast cancer submitted to definitive surgical treatment were evaluated. The monoclonal antibodies used were anti-factor VIII, anti-CD31 and anti-CD34. Microvessels were counted in the areas of highest microvessel density in ten random fields (200 x). The data were analyzed using the Kruskal-Wallis nonparametric test (p < 0.05). Results: Mean microvessel densities with anti-factor VIII, anti-CD31 and anti-CD34 were 4.16 +/- 0.38, 4.09 +/- 0.23 and 6.59 +/- 0.42, respectively. Microvessel density as assessed by anti-CD34 was significantly greater than that detected by anti-CD31 or anti-factor VIII (p < 0.0001). There was no statistically significant difference between anti-CD31 and anti-factor VIII (p = 0.4889). Conclusion: The density of stained microvessels was greater and staining was more intense with anti-CD34 compared to anti-CD31 and anti-factor VII-related antigen.
Resumo:
Objective. Given their involvement in pathological and physiological angiogenesis, there has been growing interest in understanding and manipulating endothellial progenitor cells (EPC) for therapeutic purposes. However, detailed molecular analysis of EPC before and during endothelial differentiation is lacking and is the subject of the present study. Materials and Methods. We report a detailed microarray gene-expression profile of freshly isolated (day 0) human cord blood (CB)-derived EPC (CD133(+)KDR(+) or CD34(+)KDR(+)), and at different time points during in vitro differentiation (early: day 13; late: day 27). Results. Data obtained reflect an EPC transcriptome enriched in genes related to stem/progenitor cells properties (chromatin remodeling, self-renewal, signaling, cytoskeleton organization and biogenesis, recruitment, and adhesion). Using a complementary DNA microarray enriched in intronic transcribed sequences, we observed, as well, that naturally transcribed intronic noncoding RNAs were specifically expressed at the EPC stage. Conclusion. Taken together, we have defined the global gene-expression profile of CB-derived EPC during the process of endothelial differentiation, which can be used to identify genes involved in different vascular pathologies. (C) 2008 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.