40 resultados para charge-transfer complex

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the amine sulfur dioxide chemistry was well characterized in the past both experimentally and theoretically, no systematic Raman spectroscopic study describes the interaction between N,N-dimethylaniline (DMA) and sulfur dioxide (SO(2)). The formation of a deep red oil by the reaction of SO(2) with DMA is an evidence of the charge transfer (CT) nature of the DMA-SO(2) interaction. The DMA -SO(2) normal Raman spectrum shows the appearance of two intense bands at 1110 and 1151 cm(-1), which are enhanced when resonance is approached. These bands are assigned to nu(s)(SO(2)) and nu(phi-N) vibrational modes, respectively, confirming the interaction between SO(2) and the amine via the nitrogen atom. The dimethyl group steric effect favors the interaction of SO(2) with the ring pi electrons, which gives rise to a pi-pi* low-energy CT electronic transition, as confirmed by time-dependent density functional theory (TDDFT) calculations. In addition, the calculated Raman DMA-SO(2) spectrum at the B3LYP/6-311++g(3df,3pd) level shows good agreement with the experimental results (vibrational wavenumbers and relative intensities), allowing a complete assignment of the vibrational modes. A better understanding of the intermolecular interactions in this model system can be extremely useful in designing new materials to absorb, detect, or even quantify SO(2). Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benzene adsorbed on highly acidic sulfated TiO2 (S-TiO2) shows an intriguing resonance Raman (RR) effect, with excitation in the blue-violet region. There are very interesting spectral features: the preferential enhancement of the e(2g) mode (1595 cm(-1)) in relation to the a(1g) mode (ring-breathing mode at 995 cm(-1)) and the appearance of bands at 1565 and 1514 cm(-1). The band at 1565 cm(-1) is probably one of the components of the e(2g) split band, originally a doubly degenerate mode (8a, 8b) in neat benzene, and the band at 1514 cm(-1) is assigned to the 19a mode, an inactive mode in neat benzene. These facts indicate a lowering of symmetry in adsorbed benzene, which may be caused by a strong interaction between S-TiO2 and the benzene molecule with formation of a benzene to Ti (IV) charge transfer (CT) complex or by the formation of a benzene radical cation species. However, the RR spectra of the adsorbed benzene cannot be assigned to the benzene radical cation because the observed wavenumber of the ring-breathing mode does not have the value expected for this species. Moreover, it was found by ESR measurements that the amount of radicals was very low, and so it was concluded that a CT complex is the species that originates the RR spectra. The most favorable intensification of the band at 1595 cm(-1) in the RR spectra of benzene/S-TiO2 at higher excitation energy corroborates this hypothesis, as an absorption band in this energy range, assigned to a CT transition, is observed. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the optical properties of edge-fiinctionalized graphene nanosystems, focusing on the formation of junctions and charge-transfer excitons. We consider a class of graphene structures that combine the main electronic features of graphene with the wide tunability of large polycyclic aromatic hydrocarbons. By investigating prototypical ribbon-like systems, we show that, upon convenient choice of functional groups, low-energy excitations with remarkable charge-transfer character and large oscillator strength are obtained. These properties can be further modulated through an appropriate width variation, thus spanning a wide range in the low-energy region of the UV-vis spectra. Our results are relevant in view of designing all-graphene optoelectronic nanodevices, which take advantage of the versatility of molecular functionalization, together with the stability and the electronic properties of graphene nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dideprotonation of 4-(4-nitrophenylazo)resorcinol generates an anionic species with substantial electronic pi delocalization. As compared to the parent neutral species, the anionic first excited electronic transition, characterized as an intramolecular charge transfer (ICT) from the CO(-) groups to the NO(2) moiety, shows a drastic red shift of ca. 200 nm in the lambda(max) in the UV-vis spectrum, leading to one of the lowest ICT energies observed (lambda(max) = 630 nm in dimethyl sulfoxide (DMSO)) in this class of push-pull molecular systems. Concomitantly, a threefold increase in the molar absorptivity (epsilon(max)) in comparison to the neutral species is observed. The resonance Raman enhancement profiles reveal that in the neutral species the chromophore involves several modes, as nu(C-N), nu(N=N), nu(C=C) and nu(s)(NO(2)), whereas in the dianion, there is a selective enhancement of the NO(2) vibrational modes. The quantum chemical calculations of the electronic transitions and vibrational wavenumbers led to a consistent analysis of the enhancement patterns observed in the resonance Raman spectra. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly dispersed nanocomposites of polyaniline(PANI) and oxidized single wall carbon nanotubes(SWNTs) have been prepared using dodecylbenzenesulfonic acid as dispersant. The materials were characterized via resonance Raman and electronic absorption spectroscopies. The behavior of the composites as a function of the applied potential was also investigated using in situ Raman electrochemical measurements. The results obtained at E(laser) = 1.17 eV suggest that a charge-transfer process occur between PANI and semiconducting nanotubes for samples where the metallic tubes are previously oxidized. The spectroelectrochemical data show that the presence of SWNTs prevents the oxidation of PANI rings. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyfluorene end-capped with N-(2-benzothiazole)-1 8-naphthalimide (PF-BNI) is a highly fluorescent material with fluorescence emission modulated by solvent polarity Its low energy excited state is assigned as a mixed configuration state between the singlet S(1) of the fluorene backbone (F) with the charge transfer (CI) of the end group BNI The triexponential fluorescence decays of PF-BNI were associated with fast energy migration to form an intrachain charge-transfer (ICCT) state polyfluorene backbone decay and ICCT deactivation Time-resolved fluorescence anisotropy exhibited biexponential relaxation with a fast component of 12-16 ps in addition to a slow one in the range 0 8-1 4 ns depending on the solvent showing that depolarization occurs from two different processes energy migration to form the ICCT state and slow rotational diffusion motion of end segments at a longer time Results from femtosecond transient absorption measurements agreed with anisotropy decay and showed a decay component of about 16 ps at 605 nm in PF BNI ascribed to the conversion of S(1) to the ICCT excited state From the ratio of asymptotic and initial amplitudes of the transient absorption measurement the efficiency of intrachain ICCT formation is estimated in 0 5 which means that on average, half of the excited state formed in a BNI-(F)(n)-BNI chain with n = 32 is converted to its low energy intrachain charge-transfer (ICCT) state

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solvatochromic and ionochromic effects of the iron(II)bis(1,10-phenanthroline)dicyano (Fe(phen)(2)(CN)(2)) complex were investigated by means of combined DFT/TDDFT calculations using the PBE and B3LYP functionals. Extended solvation models of Fe(phen)(2)(CN)(2) in acetonitrile and aqueous solution, as well as including interaction with Mg(2+), were constructed. The calculated vertical excitation energies reproduce well the observed solvatochromism in acetonitrile and aqueous solutions, the ionochromism in acetonitrile in the presence of Mg(2+), and the absence of ionochromic effect in aqueous solution. The vertical excitation energies and the nature of the transitions were reliably predicted after inclusion of geometry relaxation upon aqueous micro- and global solvation and solvent polarization effect in the TDDFT calculations. The two intense UV-vis absorption bands occurring for all systems studied are interpreted as transitions from a hybrid Fe(II)(d)/cyano N(p) orbital to a phenanthroline pi* orbital rather than a pure metal-to-ligand-charge transfer (MLCT). The solvatochromic and ionochromic blue band shifts of Fe(phen)(2)(CN)(2) were explained with preferential stabilization of the highest occupied Fe(II)(d)/cyano N(p) orbitals as a result of specific interactions with water solvent molecules or Mg(2+) ions in solution. Such interactions occur through the CN(-) groups in the complex, and they have a decisive role for the observed blue shifts of UV-vis absorption bands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The vibrational spectroscopic characterization of a sulfur dioxide visual sensor was carried out using a Raman microscope system. It was observed the formation of two distinct complexes, that were characterized by the position and relative intensities of the bands assigned to the symmetric stretching, nu(s)(SO(2)),of the linked SO(2) molecules. In fact, in the yellowish orange complex, that corresponds to the 1:1 stoichiometry, only one band is observed, assigned to nu(s)(SO(2)) at ca. 1080 cm-(1) and, in the deep red complex, that corresponds to the 1:2 complex, at ca. 1070 and 1090 cm(-)1 are observed. The variation of the relative intensities of the bands assigned to nu(s)(SO(2)) present in the Ni(II)center dot SO(2) complex, in different points of the sample, shows clearly the requirement of the Raman microscope in the vibrational characterization of this kind of molecular sensor. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have employed UV-vis spectroscopy in order to investigate details of the solvation of six solvatochromic indicators, hereafter designated as ""probes"", namely, 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl) phenolate (RB); 4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePM; 1-methylquinolinium-8-olate, QB; 2-bromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr, 2,6-dichloro-4-(2,4,6-triphenylpyridinium-1-yl) phenolate (WB); and 2,6-dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr,, respectively. These can be divided into three pairs, each includes two probes of similar pK(a) in water and different lipophilicity. Solvation has been studied in binary mixtures, BMs, of water, W, with 12 protic organic solvents, S, including mono- and bifunctional alcohols (2-alkoxyethanoles, unsaturated and chlorinated alcohols). Each medium was treated as a mixture of S, W, and a complex solvent, S-W, formed by hydrogen bonding. Values of lambda(max) (of the probe intramolecular charge transfer) were converted into empirical polarity scales, E(T)(probe) in kcal/mol, whose values were correlated with the effective mole fraction of water in the medium, chi w(effective). This correlation furnished three equilibrium constants for the exchange of solvents in the probe solvation shell; phi(W/S) (W substitutes S): phi(S-W/W) (S-W substitutes W), and phi(S-W/S) (S-W substitutes S), respectively. The values of these constants depend on the physicochemical properties of the probe and the medium. We tested, for the first time, the applicability of a new solvation free energy relationship: phi = constant + a alpha(BM) + b beta(BM) + s(pi*(BM) + d delta) + p log P(BM), where a, b, s, and p are regression coefficients alpha(BM), beta(BM), and pi*(BM) are solvatochromic parameters of the BM, delta is a correction term for pi*, and log P is an empirical scale of lipophilicity. Correlations were carried out with two-, three-, and four-medium descriptors. In all cases, three descriptors gave satisfactory correlations; use of four parameters gave only a marginal increase of the goodness of fit. For phi(W/S), the most important descriptor was found to be the lipophilicity of the medium; for phi(S-W/W) and phi(S-W/S), solvent basicity is either statistically relevant or is the most important descriptor. These responses are different from those of E(T)(probe) of many solvatochromic indicators in pure solvents, where the importance of solvent basicity is usually marginal, and can be neglected.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the synthesis and spectroscopic/electrochemical properties of iron(II) complexes of polydentate Schiff bases generated from 2-acetylpyridine and 1,3-diaminopropane, acetylpyrazine and 1,3-diaminopropane, and from 2-acetylpyridine and L-histidine. The complexes exhibit bis(diimine)iron(II) chromophores in association with pyrazine, pyridine or imidazole groups displaying contrasting pi-acceptor properties. In spite of their open geometry, their properties are much closer to those of macrocyclic tetraimineiron(II) complexes. An electrochemical/spectroscopic correlation between E degrees(Fe(III/II)) and the energies of the lowest MLCT band has been observed, reflecting the stabilization of the HOMO levels as a consequence of the increasing backbonding effects in the series of compounds. Mossbauer data have also confirmed the similarities in their electronic structure, as deduced from the spectroscopic and theoretical data. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We employed the Density Functional Theory along with small basis sets, B3LYP/LANL2DZ, for the study of FeTIM complexes with different pairs of axial ligands (CO, H(2)O, NH(3), imidazole and CH(3)CN). These calculations did not result in relevant changes of molecular quantities as bond lengths, vibrational frequencies and electronic populations supporting any significant back-donation to the carbonyl or acetonitrile axial ligands. Moreover, a back-donation mechanism to the macrocycle cannot be used to explain the observed changes in molecular properties along these complexes with CO or CH(3)CN. This work also indicates that complexes with CO show smaller binding energies and are less stable than complexes with CH(3)CN. Further, the electronic band with the largest intensity in the visible region (or close to this region) is associated to the transition from an occupied 3d orbital on iron to an empty pi* orbital located at the macrocycle. The energy of this Metal-to-Ligand Charge Transfer (MLCT) transition shows a linear relation to the total charge of the macrocycle in these complexes as given by Mulliken or Natural Population Analysis (NPA) formalisms. Finally, the macrocycle total charge seems to be influenced by the field induced by the axial ligands. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigated the physical processes involved in the development of thunderstorms over southwestern Amazon by hypothesizing causalities for the observed cloud-to-ground lightning variability and the local environmental characteristics. Southwestern Amazon experiences every year a large variety of environmental factors, such as the gradual increase in atmospheric moisture, extremely high pollution due to biomass burning, and intense deforestation, which directly affects cloud development by differential surface energy partition. In the end of the dry period it was observed higher percentages of positive cloud-to-ground (+CG) lightning due to a relative increase in +CG dominated thunderstorms (positive thunderstorms). Positive (negative) thunderstorms initiated preferentially over deforested (forest) areas with higher (lower) cloud base heights, shallower (deeper) warm cloud depths, and higher (lower) convective potential available energy. These features characterized the positive (negative) thunderstorms as deeper (relatively shallower) clouds, stronger (relatively weaker) updrafts with enhanced (decreased) mixed and cold vertically integrated liquid. No significant difference between thunderstorms (negative and positive) and nonthunderstorms were observed in terms of atmospheric pollution, once the atmosphere was overwhelmed by pollution leading to an updraft-limited regime. However, in the wet season both negative and positive thunderstorms occurred during periods of relatively higher aerosol concentration and differentiated size distributions, suggesting an aerosol-limited regime where cloud electrification could be dependent on the aerosol concentration to suppress the warm and enhance the ice phase. The suggested causalities are consistent with the invoked hypotheses, but they are not observed facts; they are just hypotheses based on plausible physical mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural, electronic and magnetic properties of Fe and Ti atomic wires and the complete covering when adsorbed on graphene are presented through ab initio calculations based on density functional theory. The most stable configurations are investigated for Fe and Ti in different concentrations adsorbed on the graphene surface, and the corresponding binding energies are calculated. The results show a tendency of the Ti atoms to cover uniformly the graphene surface, whereas the Fe atoms form clusters. The adsorption of the transition metal on the graphene surface changes significantly the electronic density of states near the graphene Fermi region. In all arrangements studied, a charge transfer is observed from the adsorbed species to the graphene surface due to the high hybridizations between the systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The optical absorption spectra of two samples of grossular have been measured at room temperature. An intense charge transfer band (UVCT) of iron extends to the visible and near infrared region. Some peaks associated to Fe3+ ions in tetrahedral and octahedral positions have been identified and their energy levels were computed. Mn2+ and Fe2+ ions are responsible with some bands and probably these ions occupy dodecahedral positions. No change in the intensity of optical absorption spectra were found after gamma dose, but only the 505 nm band decreases with irradiation. The OH spectra, consisting of OH overtones at 2750nm and asymmetric OH bands in the near infrared region were observed in the two samples. The heat treatment produces Fe2+ -> Fe3+ and Mn2+ -> Mn3+ by oxidation. This last was observed in sample II only. The thermally stimulated luminescence of both grossular samples has been investigated. Due to differences in iron and manganese concentration, not only a large difference has been observed in their optical absorption behavior, but also a striking difference in their thermoluminescent behavior. Actually, it is not clear whether other impurities such as Ti, Na and K that are present in quite different concentration in grossular I and II are also contributing to the thermoluminescenct properties of both samples. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The solvatochromism and other spectroscopic and photophysical characteristics of four azo disperse dyes, derived from 2-amino-5-nitrothiazole, were evaluated and interpreted with the aid of experimental data and quantum mechanical calculations. For the non-substituted compound two conformers, E and Z, were proposed for the isolated molecules, being the second one considerably less stable. The optimization of these structures in combination with a SCRF methodology (IEFPCM, Simulating the molecules in a continuum dielectric with characteristics of methanol), suggests that the Z form is not stable in solution. This same behaviour is expected for the substituted compounds, which is corroborated by experimental data presented in previous investigations [A.E.H. Machado, L.M. Rodrigues, S. Gupta, A.M.F. Oliveira-Campos, A.M.S. Silva, J. Mol. Struct. 738 (2005) 239-245]. For the substituted compounds, two forms derived from E conformer (A and R) are possible. Quantum mechanical data suggest for the isolated molecules, that the low energy absorption hand of the E conformers involve at least two close electronic states. having the low-lying excited state a (1)(n,pi*) nature, and being the S-2 state attributed to a (1)(pi,pi*) transition. The data also suggest a small energy gap between the absorption peaks of A and B, related to the easy conversion between these forms. For the structures optimized in combination with the applied SCRF methodology, an states inversion is observed for the Substituted compounds, with a considerable diminish of the energy gap between A and B absorption peaks. The electronic spectra of these compounds are quite sensitive to changes in the solvent polarity. The positive solvatochromism is more evident in aprotic solvents, probably due to the polarization induced by the solute. These compounds do not fluoresce at 298 K, but present a small but perceptible fluorescence at 77 K, which seems to be favoured by the nature of the group in the 2 `-position of the phenyl ring. Moreover, such compounds present expressive values for first hyperpolarizability, which implies in good non-linear optics (NLO) responses and photoswitching capability. (C) 2008 Elsevier B.V. All rights reserved.